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Abstract

As data requirements continue to grow, efficient learning
increasingly depends on the curation and distillation of
high-value data rather than brute-force scaling of model
sizes. In the case of a hyperspectral image (HSI), the chal-
lenge is amplified by the high-dimensional 3D voxel struc-
ture, where each spatial location is associated with hun-
dreds of contiguous spectral channels. While vision and
language models have been optimized effectively for natu-
ral image or text tasks, their cross-modal alignment in the
hyperspectral domain remains an open and underexplored
problem. In this article, we make an attempt to optimize
a Vision–Language Model (VLM) for hyperspectral scene
understanding by exploiting a CLIP-style contrastive train-
ing framework. Our framework maps voxel-level embed-
dings from a vision backbone onto the latent space of a
frozen large embedding model (LEM), where a trainable
probe aligns vision features with the model’s textual to-
ken representations. The two modalities are aligned via a
contrastive loss restricted to a curated set of hard (closest
wrong classes) and semi-hard (random distractors) nega-
tives, along with positive pairs. To further enhance align-
ment, descriptive prompts that encode class semantics are
introduced and act as structured anchors for the HSI em-
beddings. It is seen that the proposed method updates only
0.07% of the total parameters, yet yields state-of-the-art
performance. For example, on Indian Pines (IP) the model
produces better results over unimodal and multimodal base-
lines by +0.92 Overall Accuracy (OA) and +1.60 Kappa
(κ), while on Pavia University (PU) data it provides gains
of +0.69 OA and +0.90 κ. Moreover, this is achieved with
the set of parameters, nearly 50× smaller than DCTN and
90× smaller than SS-TMNet.

1. Introduction

Hyperspectral imaging (HSI) [16, 25] captures rich spatial–
spectral information across hundreds of contiguous narrow

bands, and facilitates fine-grained analysis of material prop-
erties and scene characteristics. Unlike RGB or multispec-
tral imagery, which provide only a handful of broad chan-
nels, HSI encodes detailed spectral signatures that can be
used to distinguish between objects that appear visually
identical. This capability has made hyperspectral methods
indispensable in domains [14, 18, 20, 37] such as remote
sensing, environmental surveillance, defense and security,
and biomedical imaging.

At the same time, this high-dimensional 3D data struc-
ture introduces fundamental challenges for representation
learning [6]. Spectral redundancy, strong inter-band corre-
lation, and the curse of dimensionality complicate feature
extraction, while limited labeled datasets amplify the risk
of overfitting. Models must also preserve the spatial con-
text of scenes, critical for interpreting patterns such as veg-
etation distribution or tumor boundaries, and at the same
time, exploit the fine-grained spectral features that distin-
guish materials. Moreover, HSI tasks differ from conven-
tional vision problems in several respects. We are listing
some of them below:
1. Spectral precision – Success often depends on identify-

ing minute spectral differences invisible to RGB-based
systems.

2. Data limitations – High acquisition cost and complex
sensor setups result in smaller, domain-specific datasets
compared to large-scale benchmarks such as ImageNet.

3. Evaluation protocol – Labeling hyperspectral pixels
is extremely difficult and expensive, the evaluation
setup [39] is often reversed compared to standard vi-
sion tasks. Instead of training on large annotated sets
and testing on small subsets, HSI models are commonly
trained with only 10% labeled training data and evalu-
ated on the remaining 90% test data. This type of pro-
tocol reflects the practical reality of scarce supervision
and shows the need for efficient learning methods under
limited label scenarios.
These differences raise the need to build newer methods

to progress hyperspectral analysis. Recent advances have
explored diverse vision architectures [5, 8, 11, 15, 33] to



address these challenges. We highlight the state-of-the-art
methods [13, 28, 29, 31, 32, 35, 39] along with established
world models [8, 9, 17, 26] below:

Literature Review. Early HSI models relied on convo-
lutional approaches. 2D-CNN [31] extracts spatial features
via stacked 2-D convolutions, while 3D-CNN [35] jointly
models spatial–spectral information. Hybrid models like
HybridSN [28] combine 3D and 2D convolutions, and cap-
ture both spatial–spectral and spatial features. Transformer-
based methods, including ViT [8, 10], SSFTT [32], and
morphFormer [29], exploit attention to model long-range
dependencies. Other architectures such as HiT [36] and SS-
TMNet [13] use spectral A3D convolutions and multiscale
spatial–spectral attention. On the other hand, dual-branch
networks like DCTN [39], combine CNNs for local features
with transformers for global spectral modeling to achieve
state-of-the-art performance. Contrastive vision–language
frameworks [19, 38] such as CLIP [26] provide transferable
cross-modal embeddings, but are designed for natural 2D
images and overlook volumetric spatial-spectral structures
in HSI. Several remote sensing applications often require
understanding complex 3D patterns, and this motivates us
to explore the multimodal alignment [26] in the hyperspec-
tral domain.

Here, we present a Vision Language Model (Figure 1a),
for hyperspectral scene understanding, that aligns a ViT
backbone with a frozen large embedding model (LEM)
[7, 22, 34] through contrastive learning. To boost discrim-
inability, we employ descriptive prompts encoding class se-
mantics and informative negatives to counter hard distrac-
tors. It is seen that training around 0.07% of parameters,
our method achieves SOTA on various HSI benchmarks. A
parameter efficiency snapshot is given in Figure 1b.

The article is organized as follows: Section 2 details the
proposed methodology, while Section 3 describes the exper-
imental setup. Section 4 presents the results with analysis,
and Section 5 concludes with an outlook and future direc-
tions.

2. Methodology
Let X ⊂ RH×W×D denote hyperspectral patches and Y =
{1, . . . , C} the set of C classes. Our goal is to learn a visual
embedding function, fθ : X → Rd, that maps semantically
similar patches closer in the latent space. To provide se-
mantic guidance, we employ a LEM, gϕ : T → Rd, which
maps textual prompts T into the shared latent space. Both
visual and textual embeddings are ℓ2-normalized:

zx =
fθ(x)

∥fθ(x)∥2
, zt =

gϕ(t)

∥gϕ(t)∥2
. (1)

This formulation induces a Riemannian geometry [30] on
the unit hypersphere Sd−1, and allows the similarity be-

tween visual and textual embeddings to be measured via the
cosine of the geodesic angle.

Prompt Engineering and LEM Embeddings. Each
class C is assigned a single descriptive prompt tC that
narrates the distinguishing visual and semantic character-
istics of hyperspectral patches, such as crop type, cultiva-
tion method, vegetation density, or aerial perspective. These
prompts are designed from domain knowledge and are made
to be informative, discriminative, and non-redundant across
classes, so that the resulting embeddings are maximally
separated in semantic space. The LEM, gϕ, maps each
prompt to a fixed embedding. During training, the LEM
is linear-probed, and the textual embeddings are kept fixed.
These embeddings serve as semantic anchors for the CLIP-
style [26] contrastive objective, and guide the visual embed-
dings to align with the corresponding class semantics. The
prompts are designed in this manner:

✔ Descriptive Prompt Template. This image shows a
large cultivated field of {<CLS>}, where {<CLS>}
plants are densely grown in rows; the vivid green
{<CLS>} vegetation is clearly visible from an
aerial perspective.

Other classes use similarly structured prompts with
<CLS> as the class placeholder. For the vision backbone,
we employ Masked Vision Transformer [3, 8, 12], that we
train end-to-end on hyperspectral patches using the pro-
posed contrastive objective.

Contrastive Loss with Hard and Semi-Hard Nega-
tives. Let zi = zxi

∈ Rd denote the ℓ2-normalized embed-
ding of the ith hyperspectral patch produced by the vision
encoder, and let pj = ztj ∈ Rd denote the ℓ2-normalized
textual prototype embedding for class j.

We now define a scaled cosine similarity between an im-
age embedding and a class prototype as:

sij = τ z⊤i pj , τ = elogit scale, i ∈ B, j ∈ {1, . . . , C},
(2)

where τ > 0 is a learnable temperature scaling the dis-
tribution, and B denotes the training batch.

Positive logit For patch i with ground-truth label yi, the
positive logit is: s+i = siyi

, representing similarity to the
correct class prototype.

Hard negatives Let kh denote the number of top-hard
negatives. For patch i, the indices of the top-kh most con-
fusing incorrect classes are:

Hi = Top-kh
(
{sij | j ̸= yi}

)
, (3)

and the corresponding logits are shard
i = {sij | j ∈ Hi}.



(a) (b)

Figure 1. Graphical snapshot of our approach: (a) Vision–Language Model for hyperspectral scene understanding. (b) Perfor-
mance–Efficiency tradeoff across different methods on IP (up) and PU (down); the size of a circle is proportional to the total parameters
(MB). The x-axis denotes the overall accuracy in (%) and the y-axis represents FLOPs in G. The legend is common for both datasets.

Semi-hard negatives Let ks denote the number of semi-
hard negatives. We randomly sample ks number of nega-
tives from the remaining classes:

SHi ⊂ {1, . . . , C} \ ({yi} ∪Hi), |SHi| = ks, (4)

with logits: ssemi
i = {sij | j ∈ SHi}.

Combined logits We then concatenate the positive, hard,
and semi-hard negatives to form the final logit vector:

si = [ s+i , s
hard
i , ssemi

i ] ∈ R1+kh+ks . (5)

The positive logit is always the first entry, followed by the
hardest and then the semi-hard negatives.

Loss computation The cross-entropy loss over the com-
bined logits is:

Li = − log
e s+i

e s+i +
∑

j∈Hi
e sij +

∑
j∈SHi

e sij
. (6)

The batch-level loss is computed as:

L =
1

|B|
∑
i∈B

Li. (7)

This objective aligns each visual embedding zi with
its textual prototype pj , while hard and semi-hard nega-
tives enforce fine-grained discrimination on the hypersphere
Sd−1.

✔ Distractor-Aware Contrastive Alignment. The
vision and text embeddings are aligned via a con-
trastive loss on positive pairs and carefully cu-
rated hard and semi-hard negatives. Hard negatives
sharpen class boundaries, while semi-hard nega-
tives introduce variability. This optimization jointly
enhances training efficiency (Table 1, 3, 7, 8) and
embedding separability (Figure 2) at the same time.

Inference Procedure. During inference, a hyperspec-
tral patch x ∈ X is passed through the trained vision
backbone fθ to obtain its ℓ2-normalized embedding zx ∈
Rd. This embedding is then compared against the fixed
set of textual prototypes {pj}Cj=1, derived from the class-
specific prompts, using cosine similarity. The predicted
class label is determined by nearest-prototype retrieval:
ŷ = argmaxj∈{1,...,C} z⊤x pj . This way, the classification
at inference time reduces to a similarity search in the shared
cross-modal embedding space, with no additional trainable
parameters required.

3. Experimental Setups

This section outlines the experimental setup used to train on
two benchmark hyperspectral datasets [1].

Datasets Used. We evaluate on two widely-used bench-
mark hyperspectral datasets: Indian Pines [1] and Pavia
University [1]. The Indian Pines (IP) dataset was collected
by the AVIRIS sensor over agricultural fields in Northwest-



Figure 2. Loss landscape (top) and UMAP projections (bottom). From left to right: PU and IP datasets. Our model shows a more
structured, generalizable landscape and neural-collapse-like embeddings, unlike the smoother but overlapping CLIP features. For instance,
CLIP sometimes displays a butterfly-like structure for classes with larger samples, whereas our method exhibits a nearly circular embedding
with compact intra-class relationships. Also, the inter-class separation observed is more in our case. Please zoom for better clarity.

Table 1. Comparison with other SOTA methods on various HSI datasets and their computational efficiency. Bold, blue, and red represent
the highest/lowest, second, and third performance/efficiency. M-CLS represents multi CLS prompts.

Category Backbone Methods Indian Pines Pavia University FLOPs (G) Params (MB) Latency Time (s)

OA (%) κ OA (%) κ

Unimodal 2D CNN 2DCNN [31] 85.98 84.22 92.05 89.84 0.03 2.76 2.04
3D CNN 3DCNN [35] 85.95 83.91 90.95 88.44 0.13 1.54 6.54
2D + 3D CNN HybridSN [28] 67.26 62.21 91.44 89.06 0.53 4.32 7.78

Unimodal Vision Transformer ViT [8] 66.21 61.65 88.92 85.81 0.13 2.61 5.31
Token Transformer SSFTT [32] 91.11 89.94 93.18 91.25 0.02 0.15 1.18
Morph-ATT Transformer MorphFormer [29] 91.98 90.91 94.29 92.63 0.07 0.21 9.19
Hyperspectral Transformer HiT [36] 82.13 79.77 91.28 88.85 1.17 51.23 11.68
Multi-Scale Transformer SS-TMNet [13] 84.67 82.66 91.74 89.44 2.67 83.33 31.12
CNN + Transformer DCTN [39] 92.85 91.87 96.57 95.49 1.48 45.32 20.69

Multimodal Vision Language Model M-CLS CLIP [26] 93.11 91.94 96.35 94.50 0.03 0.91 13.84

Multimodal LEM + LVM OURS 94.03 93.54 97.26 96.39 0.03 0.91 14.19

∆ 0.92 1.60 0.69 0.90

ern Indiana. It has a spatial size of 145 × 145 pixels and
originally contains 220 spectral bands ranging from 0.4 to
2.5 µm. After removing water absorption bands, 200 bands
are retained. The dataset is annotated into 16 land-cover
classes, most of which are related to different types of crops
(e.g., corn, soybeans, alfalfa), along with a few classes cor-
responding to natural vegetation and man-made structures.
IP is particularly challenging due to its high class imbal-
ance, small sample sizes, and the presence of spectrally
similar vegetation classes. Total number of samples in the
IP dataset is 10,249.

The Pavia University (PU) dataset was acquired by the
ROSIS sensor over the University of Pavia, Italy. It has a
larger spatial coverage of 610×340 pixels with 115 spectral
bands, of which 103 remain after discarding noisy channels.
PU contains 9 land-cover classes, including urban features

(e.g., asphalt, bitumen, bricks, shadows), vegetation, and
bare soils. Compared to IP, PU offers higher spatial resolu-
tion (1.3 m per pixel) and more spatially coherent regions,
which makes it suitable for evaluating the ability of mod-
els to capture both spectral signatures and spatial context in
structured urban environments. The number of samples in
the PU dataset is 42,776, and it is the larger of the two.

Data Pre-Processing Pipeline Used. Given the high di-
mensionality and redundancy in hyperspectral data, we ap-
ply a zero padding to preserve the spatial structure at im-
age borders and perform a Principal Component Analysis
(PCA) [4] to reduce the spectral dimension to 25 principal
components.

Vision Language Model Summary. The designed
VLM has 335.3M parameters, with ∼ 335M frozen in
the text encoder and only ∼ 240K trainable. Of these,



the vision encoder contributes 174K parameters, the pro-
jection head 65.6K, and a single logit scale parameter.
Each 3 × 3 patch is projected into a 64-dimensional em-
bedding and processed through 6 transformer layers with
16 self-attention heads and an MLP dimension of 64.
This compact vision branch aligns with the frozen LEM
(BAAI/bge-large-en-v1.5 [2]), which provides sta-
ble 1024-D textual embeddings for descriptive prompts.

Fine-tuning Configuration. The model is trained in a
vision–language alignment setup with both hard and semi-
hard negatives. On Indian Pines, we train for 50 epochs
with batch size 32, while on Pavia University we train for
25 epochs with batch size 128. Following the DCTN [39]
protocol, 10% of labeled data is used for training and 90%
for testing. Adam optimizer is used with a learning rate
of 1 × 10−3. Contrastive training uses kh = 4 hard and
ks = 4 semi-hard negatives, with a CLIP-style loss re-
stricted to {s+, shard, ssemi} (Sec. 2). All the experiments
were simulated for four times on an NVIDIA A100 GPU.

4. Analysis of Results
In this section, we compare the proposed VLM with a set of
state-of-the-art approaches and observe that it delivers per-
formance on par with the best existing methods and yields
high accuracy at a very low computational cost.

Performance Evaluation Metrics. For evaluation, we
report both Overall Accuracy (OA) and Cohen’s Kappa
coefficient (κ). Overall Accuracy (OA) measures the pro-
portion of correctly classified samples across all classes, of-
fering an indicator of classification performance. The κ co-
efficient, on the other hand, accounts for the agreement oc-
curring by random chance and provides a chance-corrected
measure of reliability.

Comparison with SOTA Approaches. Table 1 elluci-
dates the comparative performance of the proposed VLM
against existing HSI classifiers. CNN-based unimodal base-
lines such as 2D-CNN [31], 3D-CNN [35], and HybridSN
[28] deliver moderate accuracy. This is primarily due to
their limited ability to capture long-range spectral–spatial
dependencies. Transformer-based methods (SSFTT [32],
MorphFormer [29], DCTN [39]) demonstrate clear gains
and emphasize the advantage of global attention in mod-
eling hyperspectral features. Our multimodal VLM consis-
tently surpasses these unimodal architectures and shows the
strength of cross-modal alignment. Among all the methods,
DCTN [39] stands out as a hybrid architecture that com-
bines CNNs with transformers, thus integrating both local
spatial cues and long-range global dependencies. This dual
design makes it the strongest vision-only backbone, capa-
ble of expressive feature learning. However, it is worth
noting that optimizing unimodal vision models is often
more straightforward and sometimes yields highly expres-
sive representations, since they are not constrained by the

Table 2. Ablation study of varying loss components on IP.

Variant OA (%)

✗ without Hard 90.16
✗ without Semi-Hard 93.44

✔ Full Mode (Hard + Semi-Hard) 94.03

alignment challenges posed by an additional modality. Nev-
ertheless, even the strongest unimodal transformer back-
bone (DCTN) is sometimes outperformed by multimodal
approaches such as CLIP [26], and this validates the im-
portance of incorporating meaningful textual priors. CLIP
[26] performs competitively versus DCTN [39] while being
lighter. We observe that our method surpasses all unimodal
and multimodal SOTAs on Indian Pines (+0.92 OA, +1.60
κ) and Pavia (+0.69 OA, +0.90 κ), and validates that de-
scriptive prompts and informative negatives enable stronger
cross-modal grounding.

Parameter and Latency Analysis. Table 1 highlights
the trade-off between cost and performance. CNN base-
lines [31, 35] are lightweight and fast but limited in accu-
racy. Transformer models such as SSFTT [32] offer ef-
ficiency with fewer FLOPs and parameters, while heavier
ones like MorphFormer [29] and DCTN [39] demand more
resources. Multimodal methods, including CLIP [26] and
our method, add cross-modal alignment overhead. Yet, the
proposed model achieves higher accuracy than CLIP with-
out extra FLOPs or memory. We also notice an optimal
trade-off between state-of-the-art accuracy with minimal
cost and low inference time.

Ablation on Hard vs. Semi-Hard Negatives. Table 2
presents the impact of different negative sampling strate-
gies on our contrastive alignment framework. Removing
hard negatives results in a significant performance drop to
90.16% OA, and shows their importance in disentangling
closely related spectral classes. Excluding semi-hard neg-
atives leads to a higher OA of 93.44%, but still underper-
forms compared to the full design. Incorporating both hard
and semi-hard negatives achieves the best result of 94.03%
OA. From this observation in Table 2, we can infer that
hard negatives drive the model to resolve inter-class am-
biguities by pushing apart spectrally similar but semanti-
cally different categories (e.g., different crop types in Indian
Pines). Meanwhile, semi-hard negatives act as regularizers
and refine the decision boundaries. This helps in preventing
the model from collapsing features of borderline or under-
represented classes. Together, their joint presence achieves
both separability and robust generalization (Figure 2).

Training Data Sensitivity. Table 3 shows the sensitivity
with varying supervision. Despite being one of the strongest
baselines, DCTN [39] already achieves competitive overall
accuracies (OA) on Indian Pines, and shows its effective



Table 3. OA (%) comparison of proposed technique with DCTN
[39] on Indian Pines with varying training sample percentages.

Method 10% 20% 30% 40% 50%

DCTN [39] 92.85 95.37 95.81 96.01 96.10

OURS 94.03 97.68 98.57 98.97 99.02

Table 4. ablation study of varying batch sizes on Indian Pines.

Batch Size 4 8 16 32 64 128

OURS OA (%) 93.19 93.45 93.54 94.03 93.34 91.12

integration of convolutional and transformer-based model-
ing. However, the proposed model consistently surpasses
DCTN across all training sample percentages. The im-
provement is seen under scarce supervision (10% training
data), where our method yields a +1.18% OA gain (94.03%
vs. 92.85%). This advantage further grows at higher data
availability, and reaches near-saturation with 99.02% OA
at 50% training data. This suggests that the proposed ap-
proach not only better exploits the limited labeled samples,
which is a key challenge in hyperspectral learning, but also
scales more effectively as training data increases. In con-
trast, the performance of DCTN plateaus earlier and indi-
cates limitations in capturing informative and more discrim-
inative spectral–spatial features. The steady margin main-
tained by our model corroborates its stronger representa-
tional efficiency across varying levels of supervision.

Ablation Study on Varying Batch Size. Table 4 re-
ports the effect of varying batch sizes on classification per-
formance for Indian Pines. We observe a clear trade-off
between representation quality and training stability. Small
batch sizes (e.g., 4 or 8) provide sufficient gradient diversity
but may suffer from noisier updates, and yield OA values of
93.19% and 93.45%, respectively. Increasing the batch size
to 16 improves stability and achieves 93.54%, while a batch
size of 32 provides the best balance and results in the high-
est overall accuracy of 94.03%.

Sensitivity to Prompt Representation. The results in
Table 5 depict the role of prompt design in evolving perfor-
mance. When the model is guided by label-only prompts, it
receives little more than a name tag and offers minimal se-
mantic context. Short-text prompts, while an improvement,
resemble terse dictionary entries that hint at meaning but
fail to capture the full richness of the scene. Contrary to
that, our descriptive long-text prompts act more like well-
structured narratives, and try to embed both distinction and
context that guide the model to anchor visual features to
meaningful linguistic constructs. It is much like how we
get a deeper comprehension when immersed in a full pas-
sage rather than a single word; the model achieves stronger
cross-modal alignment when exposed to richer descriptions.

✔ But why should a few extra words make such a
difference? Because in multimodal learning, every ad-
ditional semantic pattern becomes a bridge that can tie
abstract text to vision and more bridges mean stronger
cross-modal alignment.

Table 5. Comparison of different text prompt types on the Indian
Pines (IP) dataset. The results show how variations in prompt de-
sign influence classification performance.

LEM Prompt Type Label-only Short Text OURS

OA (%) 92.90 93.07 94.03

Table 6. Effect of various text-embedding backbones on IP.

LEM Backbone Type Family OA (%)

BAAI/bge-large-en-v1.5 English BGE 94.03
BAAI/bge-M3 Multilingual BGE 93.04
E5-Large (multilingual) Multilingual E5 92.72

Ablation Study on LEM Backbone Choice. Table 6
compares different text-embedding backbones used. We ob-
serve that the English-only BGE model (BAAI/bge-large-
en-v1.5) [2] achieves the highest performance, reaching
94.03% OA. This shows us that for hyperspectral classifi-
cation tasks, where the label space is relatively small, fixed,
and dominated by English terminology, a strong monolin-
gual embedding model can provide highly discriminative
representations. In contrast, the multilingual variants, al-
though more general-purpose, exhibit slightly lower perfor-
mance: BGE-M3 achieves 93.04% OA, while the E5-Large
multilingual model reaches 92.72% OA. This drop may be
attributed to the fact that multilingual models spread their
capacity across many languages and sacrifice specialization
in English, where the task-specific labels reside.

Analysis of Prompt-based vision language model
with Vision-only Baseline. Comparing a descriptive
prompt–based vision language model against a vision-only
baseline depicts the impact of textual priors in Table 7. On
both IP and PU datasets, the prompt-based approach ex-
ceeds vision-only performance (94.03% vs 91.52%, 97.26%
vs 96.60%). This gap illustrates that language-derived con-
text enhances class separability even in high-dimensional
hyperspectral spaces. Moreover, the enriched semantic
guidance helps resolve ambiguous spectral signatures and
improves the robustness of learned embeddings across vary-
ing scenes. Figure 2 visually confirms that textual pri-
ors lead to more intra-class compactness and better inter-
class margins, and also shows that textual information is
not merely auxiliary but can be central in achieving high
performance across datasets.



Analysis of the Loss Landscape. We analyze
the training dynamics of our model with CLIP [26]
in Figure 2. Loss landscape in CLIP is flat (from
some directions) and smoother, while our model
shows a slightly slanted (from numerous directions),
rugged landscape with a larger minimum diameter, and
this suggests better generalization and reduced risk of
getting trapped in saddle points. It is worth noting that
while smooth, flat loss landscapes reduce sharp minima,
but can give weaker directional optimization guidance.
Excessively isotropic minima often yield Hessian spectra
with compressed eigenvalue distributions, and suppress
anisotropic curvature and informative descent directions.
This spectral degeneracy weakens the signal-to-noise
gradient signal and limits the optimizer’s exploitation of
the principal curvature subspaces.

Qualitative Visuals of the Embeddings. The Uni-
form Manifold Approximation and Projection (UMAP) [21]
analysis show that our technique’s embeddings exhibit a
near neural-collapse-like structure [24], with tightly clus-
tered class centroids, maximal inter-class separation, and
minimal intra-class variance, contrasting with the more
overlapping CLIP embeddings. Here, we attempt to ana-
lyze the UMAP projections from two complementary per-
spectives: (1) Latent geometry and (2) Latent separation.
With respect to (1), the CLIP-induced embeddings show
non-Euclidean dispersion patterns, with certain semantic
manifolds exhibiting a butterfly-shaped bifurcation for PU.
This effect is most conspicuous in the light-blue class (Fig-
ure 2), where the embedding unfolds into two lobes joined
by a narrow topological corridor. Similarly, the light-green
class also shows anisotropic curvature and is characterized
by elongated eigen-directions that expose distortions in the
latent geometry. Contrary to that, our approach yields mani-
folds that are topologically closer to isotropic Gaussian dis-
tributions, looking like circular basins in the UMAP plane.
We also observe that this isotropy persists even for the deep
red-labeled PU class, which otherwise exhibits higher-order
deformations under CLIP. A parallel observation holds for
the IP dataset also, thus ensuring robustness across datasets.

With respect to (2) Latent separation, in the CLIP em-
beddings of the Indian Pines (IP) dataset, we observe a
noticeable inter-class connectivity involving three distinct
classes, and we highlight this with a black boundary in left
Sub-Figure 2 for clarity. This phenomenon reflects residual
overlaps in the embedding space, where class-specific man-
ifolds remain entangled rather than well-separated. How-
ever, our approach reduces this effect. The same region
that shows entanglement under CLIP appears with reduced
cross-class connectivity in our embeddings (again marked
with a black dotted box). This is also observed for the Pavia
dataset. This also corroborates our quantitative improve-
ments in accuracy and robustness.

❆ Larger Minimum Diameter? A wider basin of con-
vergence provides the optimizer greater flexibility and
reduces sensitivity to initialization.
❆ Slightly Rugged Landscape (∇2L(θ) ̸= 0)? Local
curvature, captured by the Hessian, H(θ) = ∇2L(θ),
encodes fine-grained variations. Moderate eigenvalues,
λi(H) > 0 enrich the representation space.
❆ Slight slant from numerous directions? If
∇L(θ) ̸= 0, the loss surface is slightly tilted, i.e.,
there exists at least one direction of descent. When
the slope is small (∥∇L(θ)∥ ≪ 1), the drift is up-
dated slowly, often biasing the trajectory toward flat-
ter regions of the landscape. To analyze this behav-
ior, we consider the second-order Taylor expansion:
L(θ + δ) ≈ L(θ) + ∇L(θ)⊤δ + 1

2δ
⊤H(θ)δ, where

θ ∈ RdP

denotes the parameters, δ the update step,
and H(θ) = ∇2L(θ) the Hessian. Here, the first-order
term ∇L(θ)⊤δ captures the immediate slope-driven
change, while the quadratic term 1

2δ
⊤H(θ)δ encodes

the local curvature. This clarifies how both gradient
and curvature jointly determine the behavior of updates
around θ.
Flatness can be quantified via the Hessian spectrum as:

Flatness ∼ 1
n

n∑
i=1

λi(H(θ)),

where λi are eigenvalues and n = dim(θ). Smaller λi

imply broader valleys: perturbing θ along those direc-
tions changes the loss very little. Such flat regions are
associated with stability of the solution and robustness
to parameter noise.
Hence, flatter minima typically correspond to lower ex-
pected test loss,

Ex∼D[L(θ)] ↓,

where D is the data distribution. In our case, the land-
scape exhibits more local slants from multiple direc-
tions. This helps in converging toward the global min-
imum and aligns with an improved generalization per-
formance.

Additional Benchmarking Against Pixel-Level and
Training-Efficient Approaches. Table 8 highlights how
recent SOTAs approach hyperspectral image classification
from two distinct directions. GAF-NAU [23] improves
pixel-level representation by converting 1D spectral vectors
into 2D angular feature maps using Gramian Angular Field
encoding, then applying a neighborhood attention U-Net to
suppress irrelevant signals and strengthen class discrimina-
tion. In contrast, the Forward-Forward Algorithm (FFA)
[27] targets training efficiency, replacing back-propagation



with local goodness functions to reduce computational cost
and reduce vanishing gradients. Despite these advances,
our patch-based approach achieves a higher accuracy on IP
and PU, which shows that patch-level approaches can be a
promising avenue in hyperspectral imagery.

Table 7. Comparison of descriptive prompt–based VLM against
a vision-only model on IP and PU.

Methodology IP (OA %) PU (OA %)

Descriptive prompts (VLM) 94.03 97.26
Vision-only (no prompts) 91.52 96.60

Table 8. Comparison with additional SOTAs on IP and PU.

Methodology Venue IP (OA%, κ) PU (OA%, κ)

GAF-NAU [23] CVPR’22 81.07 / 78.31 91.12 / 88.09
FFA + BP [27] CVPR’24 73.65 / 69.78 92.51 / 90.11

OURS 94.03 / 93.54 97.26 / 96.39

5. Conclusion
Our proposed vision-language model for hyperspectral im-
age classification demonstrates that integrating descriptive
textual prompts that act as anchors to visual embeddings,
significantly enhances feature discriminability, class sepa-
rability, and generalization, even under limited labeled data.
Quantitatively, our approach achieves a substantial accuracy
improvement over SOTA models on benchmark datasets
with very little parameter footprint compared to leading
transformer-based models. This article also highlights the
effectiveness of using both hard and semi-hard negatives
along with carefully engineered prompts.

Limitations and Future Works. We notice that our
method has some limitations, like sensitivity to prompt de-
sign and careful selection of text descriptors. For future
work, we plan to explore automated prompt optimization
to further improve classification performance in cross-scene
tasks for real-world application areas.
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