
LG-Traj: LLM Guided Pedestrian Trajectory Prediction

Pranav Singh Chib1 Pravendra Singh1

1Department of Computer Science and Engineering, IIT Roorkee, India
{pranavs chib, pravendra.singh}@cs.iitr.ac.in

Abstract

Accurate pedestrian trajectory prediction is crucial for var-
ious applications, and it requires a deep understanding of
pedestrian motion patterns in dynamic environments. How-
ever, existing pedestrian trajectory prediction methods still
need more exploration to fully leverage these motion pat-
terns. This paper aims to enhance pedestrian trajectory pre-
diction tasks by leveraging Large Language Models (LLMs)
to induce motion cues. We introduce LG-Traj, a novel ap-
proach incorporating LLMs to generate motion cues present
in pedestrian past/observed trajectories. Our approach also
incorporates motion cues present in pedestrian future tra-
jectories by clustering future trajectories of training data
using a mixture of Gaussians. These motion cues, along
with pedestrian coordinates, facilitate a better understand-
ing of the underlying representation. Furthermore, we uti-
lize singular value decomposition to augment the observed
trajectories, incorporating them into the model learning
process to further enhance representation learning. Our
method employs a transformer-based architecture compris-
ing a motion encoder to model motion patterns and a social
decoder to capture social interactions among pedestrians.
We demonstrate the effectiveness of our approach on pop-
ular pedestrian trajectory prediction benchmarks, namely
ETH-UCY and SDD, and present various ablation experi-
ments to validate our approach.

1. Introduction
Trajectory prediction is the process of anticipating pedes-
trian’s future motions based on their past motion. This task
is crucial for self-driving cars, behavioural analysis, robot
planning, and other autonomous systems. Accurately pre-
dicting pedestrian movements is crucial for the safety of au-
tonomous driving systems. These systems must understand
the movements of nearby pedestrians to navigate complex
traffic environments safely and avoid collisions. When fore-
casting a pedestrian’s future trajectory, a wide range of tra-
jectories can be possible, and learning such varied spatio-
temporal representations of trajectories is a major challenge

in pedestrian trajectory prediction. The trajectories of in-
dividual pedestrians are influenced by various factors, in-
cluding their inherent motion characteristics and the social
interactions of neighbouring pedestrians. Previous works
have employed recurrent networks [2, 46] to model the un-
derlying motion pattern of each pedestrian. Additionally,
graph-based methods [4, 39, 50] predict the motion pat-
tern of agents using graph structures, where vertices rep-
resent pedestrians and edges represent their interactions.
Generative-based approaches, such as GANs [18, 20, 47]
and VAEs [27, 33, 59, 60], model the distribution of plausi-
ble future motion. The above mentioned methods leverage
the spatio-temporal information from the given data to un-
derstand pedestrian motion dynamics. Building on these ef-
forts, we explore a novel approach to improving the pedes-
trian trajectory prediction task by leveraging motion cues
generated by LLM.

In this work, we present a novel approach called LLM
Guided Trajectory prediction (LG-Traj). Our approach ef-
fectively incorporates motion cues, along with the past ob-
served trajectories, to predict future trajectories (see Fig. 1).
We use a motion encoder to integrate spatio-temporal mo-
tion patterns and a social decoder to capture social inter-
actions among pedestrians for accurate trajectory predic-
tion. We utilize LLM to generate past motion cues present
in pedestrian past trajectories. Additionally, we utilize fu-
ture motion cues present in pedestrian future trajectories by
clustering future trajectories of training data using a mixture
of Gaussians. Specifically, past motion cues, past observed
trajectory, and future motion cues are utilized by the mo-
tion encoder of the transformer to model the motion patterns
(see Fig. 1). Furthermore, the social decoder of the trans-
former uses the social interactions of neighbouring pedestri-
ans along with the embedding generated by the motion en-
coder to generate socially plausible future trajectories. Ad-
ditionally, to effectively model the past trajectories, we aug-
ment the observed trajectories by singular value decomposi-
tion (SVD) and incorporate them into the training process to
further enhance representation learning. Prior work, Eigen-
trajectory [7], also used SVD, which involves converting
trajectories to the EigenTrajectory space, training the model



to predict future trajectories in the EigenTrajectory space,
and then converting the future trajectories back to Euclidean
space. In contrast, our approach uses SVD for a different
purpose, i.e., to augment the observed trajectories, and per-
forms better than other techniques used in the trajectory pre-
diction task. The novelty of our work lies in integrating the
motion cues generated by the LLM, which, in turn, signifi-
cantly improves the prediction performance. Our extensive
experimentation on popular pedestrian benchmark datasets,
namely ETH-UCY and SDD, demonstrates the effective-
ness of our proposed approach. We also present various
ablation experiments to validate our approach.

2. Related Work

2.1. Trajectory Prediction
Trajectory prediction involves forecasting the trajectory
at future timestamps given past observations. Since fu-
ture states can evolve from the current state, sequence-
to-sequence modelling approaches can be used to model
these trajectory sequences. Recurrent Neural Networks
(RNNs) [2, 22] and Long Short-Term Memory networks
(LSTM) [19] have made significant progress in sequence
prediction tasks. These architectures have been utilized to
learn the temporal patterns of pedestrian trajectories. More-
over, LSTM networks [23, 53] construct spatio-temporal
networks capable of representing structured sequence data.
However, it is worth noting that RNN-based models may
encounter issues like gradient vanishing or explosion un-
der specific circumstances. Since the movement of pedes-
trians is uncertain, there may exist variations in future tra-
jectories. To capture this variation in future trajectories,
deep generative models such as Generative Adversarial Net-
work (GAN) [18, 20, 47], Variational Auto-Encoder (VAE)
[27, 33, 59, 60], normalizing flow [9], and diffusion-based
models [17, 35] are used. Transformers demonstrated satis-
factory performance in trajectory prediction [15, 62, 64, 65]
and have been frequently used to model long-range rela-
tionships. Some work [31, 49] uses graph neural network-
based techniques by building a graph structure containing
pedestrian nodes and interaction edges for trajectory pre-
diction. The graph-structured pedestrian characteristics are
updated using transformers [16, 41, 55, 57, 63], graph con-
volutional networks [4, 31], and graph attention networks
[6, 22, 25, 50]. Despite significant progress in trajectory
prediction, as mentioned above, there is a need for further
exploration to leverage motion cues effectively. Our ap-
proach leverages motion cues from the LLM to move for-
ward in this direction.

2.2. Large Language Model
Large language models [1, 29, 52] have started to be used
in scene understanding tasks, including object localization

[12], scene captioning [3], and visual question answering
[37, 51]. For example, in autonomous driving, DriveLike-
Human [14] uses LLMs to create a new paradigm that mim-
ics how humans learn to drive. Similarly, GPT-Driver [34]
uses GPT-3.5 to improve autonomous driving with reli-
able motion planning. Parallel to this, SurrealDriver [24]
builds an LLM-based driver agent with memory modules
that mimic human driving behaviour to comprehend driv-
ing scenarios, make decisions, and carry out safe actions.
ADAPT [3] offers explanations in driving captions to under-
stand every stage of the decision-making process involved
in autonomous vehicle control. To explore the capabili-
ties of LLMs without explicit prompt engineering, Traj-
LLM [26] uses Sparse Context Joint Encoding to encode
the spatial-temporal scene input, such as agent states and
lanes, into a format that LLMs can understand. LLM plan-
ning capabilities are also being used in robot navigation
[21, 42], where natural language commands are translated
into navigation goals. In pedestrian trajectory prediction,
there has not been much effort to utilize the capabilities
of large language models. Recently, LMTraj [8] proposed
a language-based multimodal trajectory predictor that uses
the language model as a numerical regressor to predict fu-
ture trajectories directly. In contrast, we leverage the capa-
bilities of LLM by training the trajectory prediction model
with motion cues generated by LLM to understand the un-
derlying trajectory motion patterns better.

3. Method
3.1. Problem Definition
Formally, the observation trajectory with length Tob can be
represented as Xi = {(xt

i, y
t
i) | t ∈ [1, . . . , Tob]}, where

(xt
i, y

t
i) is the spatial coordinate of a pedestrian i at tth time.

Furthermore, ground truth future trajectory for prediction
time length Tpred can be defined as Yi = {(xt

i, y
t
i) | t ∈

[Tob+1, . . . , Tpred]}. The number of pedestrians in the scene
is represented by N , and i ∈ N denotes the pedestrian in-
dex. The goal of trajectory prediction is to generate future
trajectories (Ŷi) that closely approximate the ground truth
trajectory (Y i).

3.2. Trajectories Augmentation
We first construct the trajectory matrix X by stacking all
pedestrian observations from a training batch. We then uti-
lize Singular Value Decomposition (Eq. 1) followed by the
rank-k approximation (Eq. 2) to obtain the augmented tra-
jectories.

X = UobSobV
⊤

ob (1)

where Uob= [u1, · · · ,uL] and Vob= [v1, · · · ,vN ] are
orthogonal matrices and Sob is a diagonal matrix, consisting
of singular values σ1 ≥ σ2 ≥ · · · ≥ σr > 0. Here, L =



Figure 1. The overview of our proposed LG-Traj involves taking multiple inputs including past motion cues, past observed trajectory, and
future motion cues. First, we augment the given observed trajectory using rank-k approximation via singular value decomposition (SVD).
Then for the subsequent steps, we either use the original past observed trajectory or augmented past observed trajectory. Next, we generate
past motion cues (Mi) from LLM using the past observed trajectory (Xi) of the ith pedestrian. Tokenizer output (Ti) is generated from
Mi by the tokenizer. Past motion cues embedding (Zm) is obtained by a linear transformation of Ti. Past trajectory embedding (Zp) is
obtained by a linear transformation of Xi. Cluster embedding Zc is obtained by a linear transformation of trajectory clusters. Trajectory
clusters are generated by clustering future trajectories of training data using a mixture of Gaussians. Positional encoding is added to the
concatenated embeddings (Zm, Zp, Zc), and the result is passed as an input to the motion encoder to model the motion patterns. The
embedding generated by the motion encoder (Ze) along with neighbour embedding (Zne) is passed as an input to the social decoder to
predict future trajectories. * represent frozen symbol for LLM and Tokenizer.

2×Tob for observed pedestrian trajectory. N is the number
of pedestrians, and r is the rank of X. We use the rank-k
approximation of X by using the first k singular vectors as
shown below:

X̃ = Uob,k Sob,k V
⊤

ob,k (2)

where Uob,k = [u1, · · · ,uk], Sob,k = diag(σ1, . . . , σk),
Vob,k = [v1, . . . ,vk]. Also, X̃ is the approximated matrices
obtained from the best rank-k approximation of X, contain-
ing only the k most significant singular values. This ap-
proximation allows us to preserve critical information with
minimal loss of information, as shown below:

Information Loss = 1−
∑k

t=1 σt∑r
t=1 σt

(3)

Here, r is the total number of singular values, and σt rep-
resents the tth singular value. We augment the given past
observed trajectory using rank-k approximation via singu-
lar value decomposition (SVD). We also demonstrate ex-
perimentally how different k values impact information re-
tention. We either use the original past observed trajectory
or the augmented past observed trajectory, but not both si-
multaneously. Throughout the remainder of the paper, we
exclusively present formulations using the original past ob-
served trajectories for the sake of simplicity. However, it is
important to note that the same formulation is applicable to
augmented past observed trajectories.

3.3. Clustering using Mixture of Gaussians
We utilize the Gaussian Mixture Model to model the diverse
future motion cues from the training data. Specifically, we
construct mixed Gaussian clusters, which are a combination
of C Gaussians ({N (µc, σ

2
c )}, (1 ≤ c ≤ C)). These mul-

tiple Gaussians represent different motion cues present in
future trajectories (i.e., linear motion, curved motion, etc.).
To generate clusters, we first preprocess the future trajec-
tories by translating all starting coordinates to the origin,
followed by rotation to the positive zero-degree direction.
Then, we cluster similar motion behaviours of future tra-
jectories into C clusters with their respective clusters means
µ = {µcj}j=1,...,|C|. For instance, if there are 50 trajectory
clusters, then C ∈ R50×Tpred×2 and clusters {c1, c2, . . . c50}.
The output clusters signify diverse motion cues in pedes-
trian future trajectories.

3.3.1. Soft Trajectory Probability
LG-Traj outputs the predicted trajectories along with their
corresponding probabilities, which is beneficial for estimat-
ing the uncertainty associated with each prediction. For in-
stance, lower probabilities indicate that the model is less
confident about the prediction. Specifically, following the
nearest neighbour hypothesis [11], the trajectory cluster cj
(from Gaussian mixture model M) closer to the ground
truth is the most likely one, i.e., owning the maximum prob-
ability. The soft probability pi for ith pedestrian is com-
puted by taking the negative squared Euclidean distance be-
tween the ground truth trajectory and the cluster centre, nor-



Figure 2. Illustration of input prompt and examples of motion cues generation from the LLM. We present three different examples where
the LLM correctly identifies the underlying trajectory motion pattern, such as linear motion, curved motion, and standing still, based on
the coordinates provided as input to the LLM.

malizing it, and then applying the softmax as given below:

pi =
e−∥Yi−cj∥2

2∑|C|
j=1 e

−∥Yi−cj∥2
2

(4)

Here, cj represents the nearest cluster to the ith pedes-
trian’s ground truth trajectory, while pi indicates the soft
probability of the ith pedestrian.

3.4. Past Motion Cues generated by LLM
3.4.1. Prompt Engineering
In this step, we guide the LLMs to generate the motion cues
given the observed past trajectories of the pedestrians. We
are not fine-tuning the LLM; instead, we are using a pre-
trained LLM with frozen weights to generate motion cues.
Our prompt design is shown in Fig. 2(a). Pedestrian trajec-
tories [54] may follow any motion patterns, such as straight,
curved, etc., to avoid collisions. To identify these patterns,
we use the LLM, categorizing the motion patterns into lin-
ear, curved, standing still, and other patterns (see Fig. 2).

We adapted the chat template for our task to generate the
motion cues. Our simple prompt can infer the motion cues

when the trajectory coordinates sequence is fed to the LLM.
We begin by specifying the system’s role, where we provide
a precise description of the system and its task, which is to
identify motion patterns in pedestrian movements. Next,
we specify the format of the user role and input data to
the LLM. This simple template formatting ensures that the
LLM correctly aligns the coordinates with the motion cues.
The generated cues are shown in Fig. 2. The first example
contains the linear motion trajectory of the pedestrian, and
the LLM correctly identifies the pattern, followed by the
stationary and curved motion of the pedestrian.

3.4.2. Generation
Given a set of observed coordinates for the ith pedes-
trian trajectory Xi. A Language Model (fLLM) generates
past motion cues Mi containing the motion patterns of the
pedestrian:

Mi = fLLM(Xi) (5)

The past motion cues Mi for the ith agent is transformed
into an tokenized output embedding vector Ti using a tok-
enizer:



Ti = gST(Mi) (6)

Here, Mi is the past motion cues (text description) gen-
erated by the LLM for the ith pedestrian and gST is the tok-
enizer. Unlike a traditional classifier that relies on fixed la-
bels/classes (e.g., ‘walking,’ ‘standing’), our generated mo-
tion patterns are not fixed, allowing LLM to represent more
complex behaviors. Following the prior NLP pipeline [43],
we utilize a tokenizer to transform language-based motion
cues into a format that the model can comprehend. This
is achieved by directly employing pretrained tokenizers to
convert motion cues into tokens specific to the sentences.

3.5. Motion Embedding
Our approach utilizes linear layers to embed the past mo-
tion cues (Eq. 7), future motion cues (Eq. 8), and past
observed trajectory (Eq. 9). Additionally, we incorporate
a positional encoding to model the temporal representation
from the data to understand pedestrian motion dynamics.
Positional encoding enables the model to capture long-term
temporal dependencies within the underlying data. The em-
beddings from the LLM are tokenized and then transformed
to yield the past motion cues embedding, as given below:

Zm = Fm(T,Wm) (7)

Here, Fm(·, ·) denotes a linear layer with trainable
weight matrix Wm. T ∈ RB×Es , where B is the batch
size and Es is the output dimension of the tokenizer. The
past motion cues embedding is Zm ∈ RB×Md , where Md is
the output dimension. Next, the cluster embedding is given
as:

Zc = Fc(C,Wc) (8)

Here, Zc ∈ R|C|×Oc represents cluster embedding. Oc

is the output dimension of the linear layer and |C| is the
number of clusters. Wc denote the weight matrices for lin-
ear layers Fc(·, ·). Finally, the past trajectory embedding is
given as:

Zp = Fp(X,Wp) (9)

Here, the embedding Zp denotes the past trajectories em-
bedding, and trajectory matrix X ∈ RB×Tob×2. Wp denote
the weight matrices for linear layers Fp(·, ·), respectively.
After obtaining all the embeddings, the past motion cues
embedding, cluster embedding, and past trajectory embed-
ding are concatenated and added with positional encoding
to get the motion embedding Zf = concat(Zm, Zc, Zp) +
PE, which is then passed as an input to the motion encoder.
Here, Zf ∈ RB×|C|×Me and PE is a tensor containing po-
sitional encoding information. Me is the output dimension.

3.6. Motion Encoder
The motion encoder is designed to model the spatio-
temporal motion patterns in pedestrian trajectories. Specif-
ically, the encoder consists of multiple identical layers (i.e.,
L number of layers), each layer consisting of a multi-head
self-attention and feed-forward network. The final output
of the encoder Ze is obtained by passing the motion embed-
ding Zf through L encoder layers:

Ze = EncoderLayer(Zf ) (10)

where Ze ∈ RB×1×embed size, embed size is the size of
the embedding, B is the batch size.

3.7. Social Decoder
The social decoder combines the pedestrian’s motion pat-
terns with the social interactions of neighbour pedestri-
ans. Neighbour embedding (Zne) is obtained by applying
linear transformation of neighbour past observed trajecto-
ries. Neighbour embedding (Zne) along with the output
Ze from the motion encoder are fed into the decoder to
forecast future trajectories. The query embedding repre-
sents the current pedestrian (Q ∈ RB×1×embed size). Key
and value embeddings represent neighbouring pedestrians
(K,V ∈ RB×N×embed size).

Through self-attention, the decoder weighs various
neighbour interactions in relation to the current pedestrian.
Furthermore, the resulting embeddings from the decoder
represent the predicted future trajectory of the pedestrian.
Along with the predicted future trajectory, we also pre-
dict the probability that estimates the uncertainty associated
with each prediction.

Zn, p̂n = DecoderLayer(Ze, Zne) (11)

Here, Ze is the output of the encoder and Zne is the
neighbour embedding. Zn ∈ RB×num×Tpred×2 is the out-
put of the decoder, where num is the number of trajectories
to be predictions at inference time. p̂n is the probabilities
associated with predicted trajectories.

During test time, we generate past motion cues from
LLM using the observed trajectory of test data. For fu-
ture motion cues, we utilize the same trajectory clusters that
were used during training. Finally, our model leverages past
motion cues, the observed trajectory from test data, and fu-
ture motion cues to predict the future trajectory for the test
data.

3.8. Training Loss
Our training loss consists of two components: trajectory
prediction loss (Ltraj), and loss for the corresponding trajec-
tory probabilities (Lprob). For trajectory prediction, we use



Table 1. Comparison of LG-Traj (Our) with other approaches on ETH, HOTEL, UNIV, ZARA1, and ZARA2 datasets in terms of ADE/FDE
(lower values are better). All approaches use the observed 8-time steps and predict the future 12-time steps. The top performance is
highlighted in bold, and the second-best performance is indicated with underline.

Model PECNet Trajectron++ SGCN STGAT CARPE AgentFormer GroupNet GP-Graph
ETH 0.54/0.87 0.61/1.03 0.52/1.03 0.56/1.10 0.80/1.40 0.45/0.75 0.46/0.73 0.43/0.63

HOTEL 0.18/0.24 0.20/0.28 0.32/0.55 0.27/0.50 0.52/1.00 0.14/0.22 0.15/0.25 0.18/0.30
UNIV 0.35/0.60 0.30/0.55 0.37/0.70 0.32/0.66 0.61/1.23 0.25/0.45 0.26/0.49 0.24/0.42

ZARA1 0.22/0.39 0.24/0.41 0.29/0.53 0.21/0.42 0.42/0.84 0.18/0.30 0.21/0.39 0.17/0.31
ZARA2 0.17/0.30 0.18/0.32 0.25/0.45 0.20/0.40 0.34/0.74 0.14/0.24 0.17/0.33 0.15/0.29

AVG 0.29/0.48 0.31/0.52 0.37/0.65 0.31/0.62 0.46/0.89 0.23/0.39 0.25/0.44 0.23/0.39
Model STT Social-Implicit BCDiff Graph-TERN FlowChain EigenTrajectory SMEMO Our
ETH 0.54/1.10 0.66/1.44 0.53/0.91 0.42/0.58 0.55/0.99 0.36/0.56 0.39/0.59 0.38/0.56

HOTEL 0.24/0.46 0.20/0.36 0.17/0.27 0.14/0.23 0.20/0.35 0.14/0.22 0.14/0.20 0.11/0.17
UNIV 0.57/1.15 0.31/0.60 0.24/0.40 0.26/0.45 0.29/0.54 0.24/0.43 0.23/0.41 0.23/0.42

ZARA1 0.45/0.94 0.25/0.50 0.21/0.37 0.21/0.37 0.22/0.40 0.21/0.39 0.19/0.32 0.18/0.33
ZARA2 0.36/0.77 0.22/0.43 0.16/0.26 0.17/0.29 0.20/0.34 0.16/0.29 0.15/0.26 0.14/0.25

AVG 0.43/0.88 0.33/0.67 0.26/0.44 0.24/0.38 0.29/0.52 0.23/0.38 0.22/0.35 0.20/0.34

Table 2. Comparison of LG-Traj (Our) with other approaches on SDD dataset in terms of ADE/FDE (lower values are better). All
approaches use the observed 8-time steps and predict the future 12-time steps.

Model CAGN STT MID SocialVAE Graph-TERN BCDiff MRL SMEMO Our
ADE 9.42 9.13 9.73 8.88 8.43 9.05 8.22 8.11 7.80
FDE 15.93 15.42 15.32 14.81 14.26 14.86 13.39 13.06 12.79

the Huber loss between the predicted trajectory (Ŷi) and the
ground truth trajectory (Yi). Huber loss is chosen for its
robustness to outliers, reducing the impact of large errors
for stable training. For probabilities, we use Cross-Entropy
loss between the ground truth probability and the predicted
probability. The trajectory prediction loss is defined as:

Ltraj =
1

N

N∑
i=1

Huber(Yi, Ŷi) (12)

where Huber(Yi, Ŷi) with δ threshold is defined as:

Huber(Yi, Ŷi) =

{
1
2 (Yi − Ŷi)

2 if |Yi − Ŷi| ≤ δ

δ(|Yi − Ŷi| − 1
2δ) otherwise

(13)
The loss for the trajectory probabilities is cross-entropy

loss Lprob which is defined as:

Lprob = − 1

N

N∑
i=1

pi log(p̂i) (14)

where pi is the ground truth trajectory probability and p̂i
is the predicted probability. The overall loss function Ltotal

is defined below.

Ltotal = Ltraj + Lprob (15)

4. Experiments

4.1. Experimental Settings

4.1.1. Datasets
We conduct experiments on two benchmark datasets: the
Stanford Drone Dataset (SDD) [46] and ETH-UCY dataset
[28, 44]. ETH-UCY is a widely used benchmark dataset for
predicting pedestrian trajectories, consisting of the trajecto-
ries of 1,536 pedestrians in four distinct scenarios split into
five subsets: ETH, HOTEL, UNIV, ZARA1, and ZARA2.
These scenarios include various scenes such as roads, inter-
sections, and open areas. SDD is also a benchmark dataset
providing bird’s-eye-view perspectives of pedestrian trajec-
tory prediction, with 5,232 trajectories from eight distinct
scenarios. We used the same experimental settings for both
ETH-UCY and SDD, with an observed trajectory length of
3.2 seconds (8 frames) and a predicted trajectory length of
4.8 seconds (12 frames) as used by the compared methods
for fair comparison. We follow the standard split set as used
by previous works [20, 33], employing a leave-one-out ap-
proach. In ETH-UCY, the agents’ positions are labeled in
meters, whereas in SDD, the annotations represent positions
marked in pixels.

4.1.2. Evaluation Metrics
To assess the effectiveness of our method, we use widely
used evaluation metrics for trajectory prediction [33], such



as Minimum Average Displacement Error (minADE) and
Minimum Final Displacement Error (minFDE). ADE mea-
sures the average difference (l2 distance) between the pre-
dicted and actual future positions of a pedestrian for all pre-
diction time steps. FDE measures the difference (l2 dis-
tance) between the predicted future endpoint position and
the actual future endpoint position.

4.1.3. Implementation Details
We use different numbers of encoders in our experiments.
We use a single encoder in ETH and HOTEL, while in
UNIV, ZARA1, ZARA2, and SDD, we stack two encoders.
The decoder remains one across all subsets. Additionally,
we choose various Gaussian Mixtures for clustering: 50
for ETH, 90 for HOTEL, 50 for UNIV, 70 for ZARA1,
50 for ZARA2, and 100 for SDD. We utilize four singular
values for trajectory augmentation, approximating the tra-
jectories based on these singular values. We use k = 1 for
ETH and HOTEL, and k = 3 for UNIV, ZARA1, ZARA2,
and SDD. Our encoder and decoder each consist of 4 multi-
head and 128-dimensional feed-forward networks. The tok-
enized output embedding vector Ti is of size 384. In motion
embedding, Me, the size is 128 for ETH and HOTEL, while
for UNIV, ZARA1, and ZARA2, it is 64, and for SDD, it is
also 64. The key and value embed size is 128. The batch
size and learning rate are set to 128 and 1 × 10−4, respec-
tively, for ETH and Hotel. For UNIV, the batch size is 64,
and the learning rate is 1× 10−4. In the Huber loss, we set
the delta to 1.

For text generation, we utilize the open-source Llama-
2-7b1 model by Meta, and for tokenization, we use
the Sentence Transformer2, which outputs tokens in re-
sponse to past motion cues. We use the following
parameters for text generation: max new tokens=32,
temperature=0.7, top k=50, top p=0.95. The
max new tokens parameter determines the maximum
number of new tokens the Language Model (LLM) can gen-
erate as output. The temperature parameter adjusts the
randomness of the sampling process. Higher temperatures
increase randomness, potentially leading to more diverse
but less coherent outputs. We set it to 0.7 for a balanced
output. The top k parameter controls the number of to-
kens with the highest probability to consider during text
generation. The top p parameter sets a threshold for the
cumulative probability mass for the model’s distribution.
Tokens with cumulative probability mass higher than this
threshold are considered during text generation. We execute
the experiments using Python 3.8.13 and PyTorch version
1.13.1+cu117. The training was conducted on NVIDIA
RTX A5000 GPU with AMD EPYC 7543 CPU. Our text
generation operates at a speed of approximately 19.71 to-

1https://llama.meta.com/llama2
2https://arxiv.org/abs/1908.10084

Figure 3. Illustration of predicted trajectories from ETH (first
column), UNIV (second column), HOTEL (third column), and
ZARA (fourth column) datasets. Predicted pedestrian trajectories
are highlighted in yellow. The observed trajectories are indicated
in orange, while the ground truth trajectories are depicted in green.
Our method demonstrates the prediction of future trajectories (yel-
low), closely matching the ground truth trajectories.

Table 3. Effect of Motion Cues (MC), Position Encoding (PE), and
Trajectories Augmentation (TA) on model performance. Results
show that all three components are crucial for accurate trajectory
prediction

Variants ETH-UCY SDD
ADE FDE ADE FDE

LG-Traj 0.20 0.34 7.80 12.79
LG-Traj w/o MC 0.36 0.69 22.1 41.2
LG-Traj w/o PE 0.22 0.36 8.23 13.41
LG-Traj w/o TA 0.23 0.37 8.26 13.59

kens per second, and the trajectory prediction takes 39.96
milliseconds.

4.2. Comparison with State-of-art Methods
4.2.1. Quantitative Results
We compare our approach with recent methods. In Ta-
bles 1, we compare with SMEMO [36], FlowChain [32],
Graph-TERN [4], EigenTrajectory [7], BCDiff [30], Social-
Implicit [40], STT [41], GP-Graph [5], GroupNet [59],
AgentFormer [64], CARPE [38], STGAT [22], SGCN [50],
Trajectron++ [48], PECNeT [33], Social-STGCNN [39],
and NMMP [20]. Our model outperforms all compared
methods in terms of average ADE/FDE on ETH-UCY
and achieves a 10%/3% relative improvement in average
ADE/FDE compared to the recent method SMEMO [36].
Similarly, in Table 2, we present the experimental results
on the SDD dataset in comparison with methods such as
SMEMO [36], MRL [58], BCDiff [30], SocialVAE [61],
MID [16], Graph-TERN [4], CAGN [13] and STT [41]. Our
method outperforms all compared methods with ADE/FDE
values of 7.80/12.79, respectively.

4.2.2. Qualitative Results
As shown in Fig. 3, our approach predicts future tra-
jectories that closely align with ground truth trajectories.
The model trained using our approach effectively captures
pedestrian interactions, movements, and various motion

https://llama.meta.com/llama2
https://arxiv.org/abs/1908.10084


Figure 4. Visualization of augmented trajectories for three pedes-
trians sampled from SDD using different k values in rank-k ap-
proximation. Blue, green, and purple represent the original tra-
jectories, while yellow, red, and brown denote their corresponding
approximated variations.

Figure 5. Visualization of ADE/FDE values obtained using our
approach for different values of k over the SDD dataset. The best
result is obtained for k=3.

patterns present in the scene.

4.3. Ablation Studies
In this section, we conduct extensive ablation studies to
examine the effectiveness of each component of LG-Traj,
along with the impact of prompt template, and rank-k ap-
proximation.

4.3.1. Effect of Various Components in LG-Traj on
Model Performance

We investigate the impact of motion cues, position encod-
ing, and trajectory augmentation on model performance.
The results are presented in Table 3, with ADE/FDE val-
ues obtained by removing individual components from our
approach. It is clear from the results that all three com-
ponents are essential for our approach, with the most sig-
nificant improvement achieved when motion cues are uti-
lized. This demonstrates the significance of motion clues
for the trajectory prediction task. Furthermore, many prior
works, such as Graph-TERN, EigenTrajectory, and LMTraj,
use data augmentations like scaling, flipping, and rotation.
Our SVD-based augmentation, however, is novel and out-

Table 4. Using Different Prompt Templates on the ETH-UCY.

Prompt Templates ADE FDE
Zero-Shot Prompt Template 0.22 0.35

System Prompt Template 0.20 0.34
Few-Shot Prompt Template 0.20 0.34

performs these methods.

4.3.2. Choice of Prompt Templates
We tested different prompt templates (three different tem-
plates) to generate motion cues and finally selected the sys-
tem prompt [56] with a system role in identifying motion
patterns, as shown in Fig. 2(a). Furthermore, we experi-
mented with zero-shot [45] and few-shot prompts [10] to
generate the motion cues. The results, in terms of ADE
and FDE, are shown in Table 4. The zero-shot prompt tem-
plate often generates text that is out of context. The few-
shot prompt requires additional tokens to include examples,
which significantly increases the text generation time and
computational requirements. For this reason, we use the
system prompt in our approach.

4.3.3. Effect of Using Different k Values
Fig. 4 shows augmented trajectories for three pedestrians
sampled from SDD for different k values. Lower values of
k result in a significant loss of information, where only the
direction of the trajectory is preserved. As the value of k
increases, more information is preserved in the augmented
trajectories. For k = 3, original and augmented trajecto-
ries exhibit a similar motion pattern on SDD. Fig. 5 shows
ADE/FDE values obtained using our approach for differ-
ent values of k over the SDD dataset, and the best result is
achieved when k = 3.

5. Conclusion
In this work, we propose LG-Traj, a novel approach that
capitalizes on past motion cues derived from a large lan-
guage model (LLM) utilizing pedestrian past/observed tra-
jectories. Furthermore, our approach integrates future
motion cues extracted from pedestrian future trajectories
through clustering of training data’s future trajectories using
a mixture of Gaussians. Subsequently, the motion encoder
utilizes both past motion cues and observed trajectories,
along with future motion cues, to model motion patterns.
Finally, the social decoder incorporates social interactions
among neighbouring pedestrians, along with the embedding
produced by the motion encoder, to generate socially plausi-
ble future trajectories. Our experimental findings illustrate
the feasibility of integrating LLM into trajectory prediction
tasks. We showcase the effectiveness of our approach on
widely used pedestrian trajectory prediction benchmarks,
including ETH-UCY and SDD, and present various abla-
tion experiments to validate our approach.
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