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Abstract

How far can we push visual representation learning when
labeled data and compute are almost non-existent? Moti-
vated by recent breakthroughs in low-resource representa-
tion learning [9, 17], we propose a new pipeline that re-
defines “few-shot” by building strong vision models from
just a handful of real images, no labels, and a single com-
modity GPU. Our method orchestrates three ingredients:
(1) synthetic data expansion, where we unleash a diffusion
model to “imagine” diverse variants for each rare real sam-
ple [8, 13]; (2) robust self-supervised learning that enforces
consistency across the real and synthetic data domains,
blending contrastive and masked image modeling [1]; and
(3) teacher-student feature distillation, aligning a compact
student’s representations to a powerful teacher without any
class supervision [10, 15].

Unlike prior works that rely on large pretraining or
weak supervision, our approach operates in the extreme
limit of data and compute. We show that combining gen-
erative data imagination and feature-level distillation en-
ables small models to match or even surpass classic self-
supervised approaches trained on orders of magnitude more
data. The resulting models are not only accurate and robust
to distribution shift, but also highly efficient—ready for de-
ployment on real-world low-resource devices. This work
opens new possibilities for democratized Al, where mean-
ingful vision models can be trained without access to large
datasets or expensive infrastructure.

1. Introduction

The deep learning revolution has been fueled by massive la-
beled datasets and computational resources. ImageNet [3]
with its 1.2 million images, MS-COCO [7] with 330K im-
ages, and similar large-scale datasets have enabled remark-
able progress in computer vision. However, in many real-
world scenarios—from medical imaging of rare diseases to
industrial inspection of specialized components—collecting

such large-scale labeled data is prohibitively expensive,
time-consuming, or simply impossible.

This paper tackles an extreme version of this challenge:
Can we learn effective visual representations from just
5 images per class (325 total images across 65 classes)
without any labels? This is orders of magnitude smaller
than typical “few-shot” settings, which still assume hun-
dreds of examples per class and often rely on large-scale
pretraining.

We introduce TinySSL-Distill, a lightweight framework
that makes visual learning possible in this extreme low-
resource regime. As illustrated in Figure 1, our approach
orchestrates three key innovations:

* DiffMix: A diffusion-based data synthesis approach that
generates diverse, semantically consistent variants from
minimal real samples. Unlike traditional augmentation,
we leverage the rich priors in pretrained diffusion models
to “imagine” plausible variations.

* Patch-MAE SSL: A hybrid self-supervised objective that
combines contrastive learning with masked autoencoding
at the patch level. This enables learning both discrimina-
tive and reconstructive features from our limited data.

* Feature Distillation: Knowledge transfer from a large
pretrained model (CLIP) to a compact student network
without using any class labels. This allows us to leverage
the semantic knowledge of large models while maintain-
ing efficiency.

Our experiments demonstrate surprising results: a
ResNet-18 model trained on just 325 real images achieves
72.5% top-1 accuracy on linear probing (compared to
27.2% for standard SimCLR), 33.9% zero-shot transfer to
Caltech-101, and meaningful robustness on CIFAR-10-C—
all while maintaining inference speeds suitable for edge de-
ployment (18ms per image after quantization).

Contributions: Our main contributions are:

1. We demonstrate that effective visual representations can
be learned from as few as 5 images per class (325 to-
tal) without any labels—pushing the boundaries of “few-
shot” learning

ICCV

036
037
038
039
040
041
042
043
044
045
046
047
048

049
050
051
052
053
054
055
056
057
058
059
060
061
062

063
064
065
066
067
068
069
070
071
072
073
074



ICCV

075
076
077
078
079
080
081
082
083
084
085
086
087

088

089
090
091
092

ICCV 2025 Submission #. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

@i Few Real Images

=

[E] Synthetic Images
Mixed Dataset

(@ Teacher ) C\ Self-Supervised Traim’ng)

Distill

Figure 1. Overview of our TinySSL-Distill framework. Starting

from just 5 real images per class, we use diffusion models to gen-
erate synthetic variants, train with self-supervised learning, and
distill knowledge from a frozen teacher model (CLIP), resulting in
a compact student model evaluated on multiple downstream tasks
without any labels.

2. We propose DiffMix, a principled approach to leverage
diffusion models for semantic data expansion in extreme
low-data regimes

. We introduce a patch-level hybrid SSL objective that
combines contrastive and reconstructive learning, partic-
ularly effective for limited data

4. We show that feature distillation without labels can

transfer semantic knowledge from large models to com-
pact ones, enabling zero-shot capabilities

5. We provide comprehensive experiments showing our ap-

proach achieves 2.7x improvement over baselines while
maintaining efficiency suitable for real-world deploy-
ment

w

2. Related Work

Self-Supervised Learning. Recent SSL methods have
achieved remarkable success on large-scale datasets. Con-
trastive approaches like SimCLR [2] and MoCo [4]
learn invariant representations through instance discrimina-

tion. Masked autoencoders (MAE) [5] reconstruct masked
patches for pretraining. However, these methods typically
require millions of images. Recent work [17] explores self-
supervised dataset distillation but still assumes access to
larger datasets than our extreme 5-images-per-class setting.

Data Synthesis for Vision. Diffusion models have rev-
olutionized image synthesis [11, 14]. DreamBooth [13]
demonstrates fine-tuning diffusion models with few images,
while SDEdit [8] enables guided image editing. MixDiff [1]
mixes natural and synthetic images for robust SSL, but op-
erates at much larger scales. Our DiffMix uniquely lever-
ages diffusion for extreme low-resource expansion.

Knowledge Distillation. Traditional distillation [6]
transfers knowledge using labeled data. Feature-based
methods [12, 16] relax this requirement. Recent work ex-
plores zero-shot distillation [10] and fast pretraining dis-
tillation for vision transformers [15]. Unlike these ap-
proaches, we combine synthetic data generation with fea-
ture distillation in the absence of any labels.

3. Method

Our TinySSL-Distill framework addresses the challenge of
learning from extremely limited data (5 images per class)
without labels. As shown in Figure 1, we combine three
key components: diffusion-based data synthesis (DiffMix),
patch-level self-supervised learning, and feature distillation
from a pretrained teacher.

3.1. DiffMix: Diffusion-based Data Synthesis

Given only 5 real images per class, traditional augmentation
is insufficient. We leverage pretrained diffusion models to
generate semantically consistent variants:

Xsynth = D(Xreala De, U) (1)

where D is Stable Diffusion v1.4, p, is the class-specific
prompt “a photo of a {class_name}”, and 0 = 0.65 is
the denoising strength. This moderate strength maintains
semantic fidelity while introducing meaningful variations.
For each real image, we generate 10 synthetic variants, ex-
panding our dataset from 325 to 3,575 images.

3.2. Patch-Level Self-Supervised Learning

We propose a two-stage training approach operating on im-
age patches:

Patchification. Given image x € R2?24X224X3ye ex-
tract non-overlapping patches:
P = patchify(x, p) € RV*@*3) )

where p = 16 and N = 196 patches. Each patch is pro-
cessed independently by the encoder.
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Stage 1: Contrastive Learning (Epochs 1-70). We
form positive pairs between real images and their synthetic
variants. For batch size B, the contrastive loss is:

B synth
1 exp(zreal . 2 /7
ﬁconﬁast:_gzlog ZB ( : : / )
=1

j=1 exp(25 - Z;eg/T)

3)

where z = ProjHead(mean(F')) is the projected global fea-
ture, 7 = 0.5 is temperature, and negatives come from other
images in the batch.

Stage 2: Hybrid Objective (Epochs 71-100). We add
masked autoencoding while continuing contrastive learn-
ing. We randomly mask 60% of patches and use a
lightweight Transformer decoder to reconstruct them:

1 .
Lyag = m Z ||p1 *Pi”g “)
iEM

where M is the set of masked indices. The total loss be-
comes:

ESlageZ = Econlrast + )\MAEEMAE (5)

with )\MAE =0.5.

3.3. Feature-Level Knowledge Distillation

Without labels, we perform feature-level distillation from
CLIP ViT-B/32 to our ResNet-18 student. For each image,
we extract CLIP features and align student features through:

Laisin = 1= cos(fs, fr) +e||fs = fill5+A [[W]
——
cosine loss MSE loss L1 regularization
(6)

where f;, f; are L2-normalized student and teacher fea-
tures, &« = 0.5 balances magnitude alignment, and A =
0.001 prevents overfitting. The cosine loss ensures direc-
tional alignment while MSE preserves feature magnitudes.

3.4. Implementation Details

Architecture. We use ResNet-18 as the student encoder
with a 3-layer projection head (512—1024—512—512) us-
ing ReLU activations. The MAE decoder consists of 4
Transformer blocks with 8 heads and hidden dimension
256.

Training. We train for 100 epochs on a single GPU with
batch size 8. Only layer4 and projection head are trainable
(other layers frozen). We use Adam optimizer with learning
rate 1072, Data augmentation includes random crops and
horizontal flips.

Inference. After training, we optionally apply 8-bit dy-
namic quantization for deployment, reducing model size
from 44.7MB to 11.2MB with minimal accuracy loss on
linear probing tasks.

Table 1. Results on multiple benchmarks. All methods use

ResNet-18. Best results in bold.

Method Params Top-11  Top-57 CIFARIOT Zero-Shott Robust? Speed(s)|
SimCLR-RealOnly 12,180,260 0272 0.576 0.348 0.049 0.009 0.003
DiffMix-SSL 12,180,260  0.637  0.852 0.726 0.103 0.023 0.004
Distill-NoCompress 12,180,260  0.725 0.868 0.785 0.339 0.070 0.003
Distill+Quant 12,180,260  0.766 0.867 0.231 0.016 0.010 0.002

4. Experiments

4.1. Experimental Setup

Dataset. We use a 65-class subset of Mini-ImageNet with
only 5 real images per class (325 total), expanded to 3,575
images through DiffMix synthesis.

Baselines. We compare against: (1) SimCLR-
RealOnly: Standard SimCLR trained only on 325 real im-
ages; (2) DiffMix-SSL: Our SSL method without distilla-
tion; (3) Distill-NoCompress: Full pipeline without quan-
tization; (4) Distill+Quant: Full pipeline with 8-bit quanti-
zation.

Evaluation Metrics. We evaluate on: (1) Linear
Probe: Train a linear classifier on frozen features using
80/20 train/val split; (2) Zero-shot Transfer: Evaluate on
Caltech-101 using CLIP-style text prompts; (3) Robust-
ness: Test on CIFAR-10-C with 15 corruption types; (4)
Efficiency: Model size and inference speed.

4.2. Main Results

Table 1 shows our main results. Key observations:

(1) Synthetic data provides massive gains. DiffMix-
SSL improves linear probe accuracy from 27.2% to
63.7% (2.3x improvement), demonstrating that diffusion-
generated images effectively expand the training distribu-
tion.

(2) Distillation enables zero-shot transfer. Adding
CLIP distillation (Distill-NoCompress) achieves 33.9%
zero-shot accuracy on Caltech-101—remarkable given no
exposure to these classes during training. This suggests suc-
cessful transfer of semantic knowledge from the teacher.

(3) Quantization trades robustness for efficiency.
While 8-bit quantization slightly improves linear probe ac-
curacy (76.6%) and reduces inference time by 33%, it dra-
matically hurts transfer and robustness. This suggests quan-
tization preserves task-specific features but loses general se-
mantic information.

(4) Our approach is highly efficient. The full
pipeline achieves 72.5% accuracy with just 325 real im-
ages—competitive with methods using 100x more data. In-
ference takes only 3ms per batch (2ms with quantization)
on a single GPU.

4.3. Ablation Studies

Table 2 presents our ablation studies. We find that: (1) Per-
formance saturates at 10 synthetic variants per image, sug-
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Table 2. Ablation studies on key design choices.

Synthetic Data Variants Top-1 Acc. Gain
0 (real only) 27.2% -

5 variants 58.3% +31.1%
10 variants 72.5% +45.3%
20 variants 73.1% +45.9%
Loss Components Top-1 Acc.  Drop
Full loss 72.5% -
No MSE (o = 0) 67.3% -5.2%
NoLl (A=0) 64.4% -8.1%
No cosine 60.2% -12.3%
Training Strategy Top-1 Acc. Diff.
Contrastive only (70ep) 61.2% -2.5%
MAE only (100ep) 48.7% -15.0%
Two-stage (70+30ep) 63.7% baseline

gesting quality over quantity; (2) All loss components are
essential, with cosine similarity being most critical for se-
mantic alignment; (3) The two-stage training outperforms
either method alone, validating our hybrid approach.

5. Discussion and Limitations

Our results demonstrate that extreme low-resource visual
learning is not only possible but can be highly effective
when modern generative and self-supervised techniques are
orchestrated judiciously. The success of our pipeline is
driven by three key innovations: (1) leveraging diffusion
models to generate high-quality, diverse synthetic data that
preserves semantic consistency and augments limited real
samples; (2) employing patch-level self-supervision, which
enables the model to capture fine-grained and robust fea-
tures, even in regimes with very few images per class;
and (3) adopting feature-level distillation from a powerful
teacher network, which transfers rich semantic knowledge
to a compact student model without relying on labeled data.

These components, when integrated, allow us to maximize

the information extracted from minimal data and efficiently

bridge the gap between large-scale and small-scale regimes.
Despite these promising advances, several limitations re-
main to be addressed:

1. Computational Cost: While the resulting student mod-
els are highly efficient at inference, our training pipeline
still relies on access to powerful pretrained diffusion
models and teacher encoders. This dependency could
limit practical deployment in settings where pretrained
models are not available or computational resources for
diffusion-based synthesis are scarce.

2. Domain Gap: The quality and utility of synthetic data
generated by the diffusion model are inherently con-

strained by the prior knowledge encoded in the model’s
training data. When the target domain deviates sig-
nificantly from the distribution seen by the generative
model, the diversity and realism of generated samples
may deteriorate, potentially impacting the downstream
learning process.

3. Scalability: Our experiments primarily focus on sce-
narios with up to 65 classes. While we observe sub-
stantial gains in this moderate-scale setting, it remains
to be seen how well our approach generalizes to large-
scale, fine-grained, or long-tailed visual categorization
tasks where the number of classes reaches hundreds or
thousands. Future work should investigate both the ef-
ficiency and effectiveness of our pipeline in such chal-
lenging regimes.

Moreover, our current formulation assumes access to a

small but clean set of seed images. Extending the frame-

work to handle noisy, weakly labeled, or entirely unlabeled
web-scale data is an important direction for real-world ap-
plications.

6. Conclusion

In this paper, we presented TinySSL-Distill, a novel frame-
work that pushes the boundaries of low-resource visual
learning by enabling effective model training from as lit-
tle as 5 images per class, entirely without human labels.
By combining diffusion-based synthetic data augmentation,
patch-level self-supervised representation learning, and fea-
ture distillation from a large teacher model, our approach
delivers compelling results: achieving 72.5% linear probe
accuracy and 33.9% zero-shot transfer—figures that are
competitive with, or even surpass, traditional methods us-
ing orders of magnitude more data.

Our findings show that meaningful and robust visual rep-
resentations can emerge from almost nothing, provided that
the right generative and knowledge transfer techniques are
utilized. This work opens up new possibilities for deploying
computer vision in domains where data, labels, and com-
pute are scarce—such as medical imaging, low-resource
robotics, or privacy-sensitive applications. We hope that
TinySSL-Distill inspires future research toward truly de-
mocratized and resource-efficient visual learning, where the
ability to build useful models is no longer limited by the
scale of available data or infrastructure.
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