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Figure 1. Illustrations of CONTROLTAC’s utilities: starting from a single reference image, CONTROLTAC can generate tens of thousands
of augmented tactile images with various contact forces and contact positions (Left). These augmented images can then be used for various
downstream tasks (Middle) and deployed in three real-world experiments (Right).

Abstract With those physical priors as control input, CONTROLTAC

generates physically plausible and varied tactile images that

Vision-based tactile sensing has been widely used in percep- can be used for effective data augmentation. Through ex-

tion, reconstruction, and robotic manipulation. However, periments on three downstream tasks, we demonstrate that

collecting large-scale tactile data remains costly due to the CONTROLTAC can effectively augment tactile datasets and

localized nature of sensor-object interactions and incon- lead to consistent gains. Our three real-world experiments
sistencies across sensor instances. Existing approaches to further validate the practical utility of our approach.

scaling tactile data, such as simulation and free-form tactile
generation, often suffer from unrealistic output and poor
transferability to downstream tasks. To address this, we 1. Introduction
propose CONTROLTAC, a two-stage controllable framework
that generates realistic tactile images conditioned on a single
reference tactile image, contact force, and contact position.

Vision-based tactile sensing is widely used in material classi-
fication [19, 35], 3D reconstruction [28, 58, 59], and robotic
manipulation [12, 33, 71]. However, collecting tactile data
“These authors contributed equally to this work. is costly since it requires physical contact, and the resulting

"Dongyu is affiliated with The University of Hong Kong. The work was images often vary due to sensor differences, gel instability,
done during an internship at the University of Maryland. and lighting, making them noisy and hard to reuse. This




‘ Realism  Variation Controllable
Text2Tac [62, 70] Low Low X
Vis2Tac [14, 36, 76] Low Medium X
Simulation [52, 53, 63] | Medium Medium v
CONTROLTAC High High v

Figure 2. Comparison of tactile data generation approaches. We
evaluate realism, output variation, and controllability.

motivates the need for efficient tactile data augmentation.

Traditional augmentations like color jittering, translation,
and rotation have limited effect due to the high variability
in tactile images [41, 66]. To scale datasets, two approaches
are common: simulation-based and generative methods.
Simulation-based methods [52, 53, 63] model sensor-object
interactions but often produce unrealistic images due to im-
perfect physics. Generative methods [14, 62, 68, 76] synthe-
size tactile images from text or visual cues but typically lack
physical constraints, resulting in low-fidelity outputs. These
methods are mainly useful for pre-training [21, 24, 75] or
simple tasks like contact localization [14, 19].

We argue that realistic tactile generation requires struc-
tured constraints and physical priors. Inspired by Control-
Net [74], which improves visual generation via edge and
depth conditioning, we propose conditioning tactile gen-
eration on contact-relevant factors—force, location, and
shape—along with a single reference image. This provides
structural cues at minimal data cost and enables physically
plausible tactile generation.

We introduce CONTROLTAC, a two-stage tactile genera-
tion framework. Stage 1 uses a reference image and 3D force
vector to generate a target image with realistic deformation
and texture. Stage 2 employs a ControlNet-style module
with a 2D contact mask for precise positional refinement.
This allows generating diverse, physically plausible tactile
images from a single reference, while modeling priors with
minimal data. As shown in Fig. 3, CONTROLTAC achieves
high realism, diversity, and controllability.

Experiments show that CONTROLTAC improves perfor-
mance in force estimation, pose estimation, and object clas-
sification, often surpassing models trained on much larger
real datasets. It generalizes to unseen objects and performs
well in real-world tasks, including precise insertion.

Our contributions are: (1) A two-stage controllable tac-
tile generation framework for realistic data augmentation;
(2) Significant gains on multiple downstream tasks using
only a single reference image; (3) Deployment in real-
world robotic experiments with strong performance on pre-
cise object insertion.
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Figure 3. Illustration of CONTROLTAC ’s two-stage tactile genera-
tion framework.
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More related work can be found in Appendix A.

2. Methodology

We propose CONTROLTAC, a controllable tactile image gen-
eration framework that generates realistic tactile images from
a single reference image, conditioned on both contact force
and contact position. This enables scalable tactile data aug-
mentation for a variety of downstream tasks, including force
estimation, contact pose estimation, and object classifica-
tion. By combining physical priors with visual cues, CON-
TROLTAC ensures that generated images are visually realistic
and physically consistent. The full technical details, includ-
ing network architecture, training procedure, and contact
mask definition, are provided in Appendix B.

The core of CONTROLTAC is a two-stage conditional

generation pipeline (Fig. 4):

1. Force-Control Generation: A conditional diffusion
model synthesizes tactile images that reflect a desired
target force while preserving the texture and color of a
reference image. The reference image is first encoded into
a latent representation, and the model is conditioned on
a relative 3D force vector AF, defined as the difference
between the target and initial forces. Using a diffusion
transformer backbone with DDIM sampling, the genera-
tor learns realistic force-induced deformations. Training
is performed on datasets with ground-truth 3D force an-
notations to ensure physical consistency. Appendix B.1
provides additional information on force-control genera-
tion.

2. Position-Control Generation: To control contact posi-
tion, the pretrained force-control generator is fine-tuned
using contact masks via ControlNet. Each mask is a fixed,
per-object template derived from a lightly pressed refer-
ence image, representing the object footprint. Changes
in position are applied through rigid in-plane transfor-
mations (translation + rotation). During both training
and inference, the mask is treated as a latent position-
control signal, guiding the generator while preserving
force-induced visual patterns. This allows flexible manip-
ulation of object position and orientation without inter-
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Figure 4. Overview of our controllable tactile generation framework. The Force-Control generator synthesizes tactile images conditioned
on force, while the Position-Control generator fine-tunes it with ControlNet to control contact position. This two-stage approach enables

both realistic and physically consistent tactile image generation.

fering with learned force representations. Further details

on position-control generation and the contact mask are

provided in Appendix B.1.

This two-stage design offers several advantages. Force
and position are controlled independently, improving train-
ing stability and generation predictability. In addition, gener-
ated tactile images can augment datasets for diverse down-
stream tasks without requiring additional data collection.

2.1. Data Augmentation for Downstream Tasks

Once trained, CONTROLTAC generates tactile images to
support three representative downstream tasks. Additional
details can be found in Appendix B.2.

* Force Estimation: Predicting 3D force vectors from tac-
tile images. The model uses a pretrained ViT encoder
and a regressor-decoder architecture to learn correlations
between tactile images and forces.

* Contact Pose Estimation: Estimating contact location
and orientation. Using the same encoder, the output pre-
dicts x, y coordinates and object rotation, with supervision
from the contact mask instead of depth.

* Object Classification: Recognizing object identity from
tactile images. Both CNN and ViT-based classifiers are
evaluated, including pretrained ViTs. Augmentation im-
proves classifier performance across six objects: five from
the Feel AnyForce dataset [50] and one additional T-shaped
object.

By explicitly modeling both force and contact position,
CONTROLTAC generates large-scale, physically-consistent
tactile datasets that improve performance across a variety
of tactile perception tasks. Full architectural details, train-
ing procedures, and additional implementation specifics are
provided in Appendix B.

3. Experiments

We evaluate our framework through three main aspects: (1)
tactile image generation (Sec.3.1 and App. E.1) to assess

generation quality against baselines; (2) downstream tasks
including force estimation (Sec.3.2 and App. E.2), pose es-
timation (Sec.3.3 and App. E.3), and object classification
(Sec.3.4 and App. E.4) to verify the effectiveness of gener-
ated tactile data for model training; and (3) real-world ex-
periments (Sec.3.5 and App. E.5) including object pushing,
real-time pose tracking, and precise insertion, demonstrating
practical applicability. Full experimental details are provided
in Appendix E.

3.1. Generation Quality Evaluation

We compare our two-stage conditional tactile genera-
tion framework (CONTROLTAC) with three baselines: hy-
brid force-position conditional diffusion, separate-control
pipeline, and single-stage force-control generation. Evalua-
tion is performed using SSIM and pixel-wise MSE on real
tactile test data from Feel AnyForce [50].

Table 1. Comparison in MSE and SSIM. Hybrid represents Hybrid
Force-Position Conditional Diffusion Model, and Separate repre-
sents Separate-Control Pipeline.

Method MSE | SSIM 1
Hybrid 31 0.81
Separate 157 0.79
Ours (First Stage) 18 0.84
Ours 23 0.83

Our method achieves the best balance of structural and
pixel-level quality. The two-stage framework enables accu-
rate control over both force and contact position, avoiding
error accumulation observed in separate-control pipelines.
Qualitative visualizations in Fig. 6 show realistic gel defor-
mation and brightness patterns. Appendix E.| provides more
detailed information on generation quality evaluation.

3.2. Downstream Task: Force Estimation

Training a force estimator with augmented data significantly
reduces MAE compared to using limited real data alone



(Fig.5,7). Augmenting 1,000 real samples with generated
images covering 20—40 force levels achieves comparable
performance to training on the full real dataset (20,000 sam-
ples). Position-control generation further improves perfor-
mance when angular coverage in the real dataset is limited,
demonstrating that CONTROLTAC effectively enriches force
distributions across contact positions. See Appendix E.2 for
more details on force estimation.

MAE Comparison: Real vs. Generated Data
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Figure 5. Force estimation performance (MAE) across different
quantities of real and generated data. The force range is 1-10 N.

3.3. Downstream Task: Pose Estimation

Pose estimators trained solely on generated images achieve
strong performance for both seen and unseen objects, outper-
forming simulation-based augmentation (Taxim [52]) and
PCA-based methods (Table 2). Using varying forces further
improves accuracy compared to fixed-force settings. Com-
bining a small amount of real data with generated images
often yields the best results. Additional information regard-
ing pose estimation is provided in Appendix E.3.

3.4. Downstream Task: Object Classification

Generated data improves classification accuracy across CNN
and ViT models compared to geometric and color-based
augmentations (Table 3). Even with small datasets, CON-
TROLTAC significantly enhances ViT performance, showing
that conditional tactile generation provides diverse and re-
alistic tactile representations. Appendix E.4 provides more
detailed information on object classification.

3.5. Real-world Experiments

We deploy trained force and pose estimators in object push-
ing, real-time pose tracking, and insertion. Further details
on real-world experiments can be found in Appendix E. 1.

Object Pushing: Force estimators trained on generated
data achieve comparable performance to those trained on real
data, demonstrating effective generalization to real objects
(Table 4).

Real-time Pose Tracking: Pose estimators track objects
at 10 Hz, validating real-time applicability.

Insertion Task: Generated-data-trained models achieve
90% (cylinder), 85% (cross/T-shape), and 75% (Type-C

Table 2. Pose estimation errors (in pixels and degrees) under differ-
ent settings.

Training Set X, Y] Angle|
Cylinder (3 Types)

PCA 15 13 22
6,000 real 8 8 4
36,000 sim 18 15 6
6,000 gen (unfixed) 7 6 3
Cross

PCA 56 19 18
3,000 real 6 6 2
12,000 sim 18 19 5
3,000 gen (unfixed) 4 5 2
T-shape (Unseen)

1,000 gen (unfixed) 5 5 4
4,000 gen (unfixed) 4 5 2
USB (Unseen)

1,000 gen (unfixed) 12 11 4
4,000 gen (unfixed) 8 9 3

Table 3. Accuracy comparisons across models and augmentation
methods. G: geometric data augmentation; C: color augmentation;
Gen: our CONTROLTAC-based augmentation method.

| 2400 (G) 4800 (G) 2400 (G+C) 4800 (G+C) 2400 (Gen) 4800 (Gen)

CNN 0.74 0.68 0.65 0.69 0.85 0.87
VIiT (Scratch) 0.62 0.60 0.62 0.65 0.93 0.95
ViT (ImageNet) |  0.78 0.76 0.74 0.79 0.99 0.99

USB) success rates, demonstrating strong practical utility
with 3 mm tolerance.

Table 4. Results of object pushing experiments for the four objects.

Force [N] Weight (1.0) Cyl. (0.50) Cyl. (0.56) Bottle (0.63)
Force ATI (G.T.) 2.24 0.96 1.06 1.08
Force (Real Data) 2.38 1.08 1.18 1.14
Force (Ours) 2.36 1.11 1.17 1.16

4. Conclusion

We present CONTROLTAC, a two-stage conditional tactile
generation framework that produces realistic and diverse
tactile images from a single reference, conditioned on force
and contact position. Experiments on three downstream
tasks and in real-world settings show that CONTROLTAC
effectively supports data augmentation and performs well
in practical applications. While this work is the first
attempt at controllable tactile image generation, it currently
considers only force and position, omitting other physical
parameters like surface texture and material hardness.
Future work will extend the framework to incorporate
additional conditions, leveraging its modular design
for richer, more physically grounded tactile generation.
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Appendix Overview

In this appendix, we provide additional details and analyses
to complement the main paper. The appendix is organized
as follows:

* Related Work (Sec. A): We provide a more detailed dis-
cussion on vision-based tactile sensing, tactile dataset col-
lection, tactile image generation, and conditional image
generation. This section situates our work in the context of
prior literature and highlights the challenges our method
addresses.

* Detailed Methodology (Sec. B): We present the complete
architecture and design of CONTROLTAC, including the
two-stage conditional tactile generation framework, force-
control and position-control generators, and the use of
contact masks. We also describe how generated data can be
leveraged for downstream tasks such as force estimation,
contact pose estimation, and object classification.

* Implementation Details (Sec. C): Training configura-
tions, hyperparameters, and evaluation metrics are detailed
to facilitate reproducibility.

¢ Details of Baselines (Sec. D): We describe the baseline
methods used for comparison, including the hybrid force-
position conditional diffusion model and the separate-
control model.

* Details of Experiments (Sec. E): This section includes
extensive experimental evaluations, covering generation
quality, downstream task performance, and real-world de-
ployment. We provide quantitative results, qualitative
visualizations, and comparisons with baseline methods.

* Additional Experiments (Sec. F): This section contains
robustness analyses, data composition studies, and the
effect of varying contact position counts on model perfor-
mance.

¢ Classifier Architectures (Sec. G): Details of CNN and
Vision Transformer (ViT) classifiers used for object classi-
fication are provided, including layer configurations and
pretraining information.

* Details of Precise Insertion (Sec. H): Specifications and
setup for the robotic insertion tasks, including both object-
based and Type-C USB insertions, are described.

* Failure Analysis (Sec. I): We discuss limitations of our
model, particularly for objects with flat surfaces or rich tex-
tures, and illustrate how small augmentations can improve
performance.

* Additional Visualizations (Sec. J): We provide supple-
mentary figures illustrating error maps, generated tactile
images under force control, simulated tactile images, and
object classification examples.

This appendix serves to provide a comprehensive un-
derstanding of our methodology, experimental setup, and
additional analyses supporting the claims made in the main

paper.

A. Related Work

Vision-based Tactile Sensing. Recently, various tactile sen-
sors have been used in different scenarios, such as vision-
based tactile sensors [32, 37, 60, 72], magnetic tactile sen-
sors [4, 5], and piezo-resistive tactile sensors [26, 57]. In
this paper, we focus mainly on vision-based tactile sensor,
which has the highest resolution and can be used to detect
precise textures [19, 35] and shear forces [40, 50].

Because of its high resolution, vision-based tactile sen-
sors have been widely utilized in different perception tasks,
such as liquid property classification [27], hardness clas-
sification [73], 3D reconstruction [28, 58, 59], 3D genera-
tion [20, 517, slip detection [34], and pose estimation [28].
Also, it has been used for various robotic tasks, such as
grasping [6, 7, 22], insertion [12, 33, 71], pouring [33], in-
hand rotation [46], and dense packing [2, 11, 71]. However,
the lack of data remains a major challenge for vision-based
tactile sensing because collecting local contact on diverse
objects is expensive. In this paper, we introduce a new frame-
work for scaling up tactile datasets in downstream tasks with
conditional tactile generation.

Building Tactile Datasets. To address the scarcity of
tactile data, many prior works focus on collecting large-scale
real-world datasets [14, 17, 36, 68]. While these efforts help
scale up tactile data, the quantity remains limited, and the
resulting datasets are often difficult to reuse fordownstream
tasks—especially in robotics tasks—due to significant vari-
ability across sensors.

Another approach is to use simulation [1, 18, 52, 53, 63],
which have been widely adopted for pre-training [15, 21, 24,
75] and Sim2Real transfer [18, 23, 53]. However, bridging
the Sim2Real gap remains a major challenge, as illustrated
in Fig. 6. High-quality Sim2Real transfer typically still
requires large real datasets for co-training [63] or the use
of generative models for domain adaptation [23]. To this
end, we propose a controllable tactile generation model that
can scale existing tactile datasets under different physical
conditions.

Tactile Image Generation. Text-to-tactile genera-
tion [62, 70] and vision-to-tactile generation [14, 36, 68, 69,
76] have been widely used for representation learning [15,
75], contact localization [14, 19], classification [14, 76], and
retrieval [19, 70]. Cross-sensor generation [48] has also
been explored to utilize various properties of different tactile
sensors. However, as shown in Fig. 3, the free-form gener-
ation from visual images often yields low-quality outputs,
limiting its utility in more complex downstream tasks. To
address this, we propose a conditional diffusion model that
generates tactile images for data augmentation, guided by
physical constraints and priors. We present both analysis and
qualitative examples in Fig. 3 to highlight the limitations of
existing approaches and the strengths of our method.

Conditional Image Generation. Conditional image



generation has become a central topic in generative model-
ing, where the goal is to generate images guided by struc-
tured inputs such as class labels, text, or physical parameters.
Early methods [3, 29, 47, 61, 67, 77] based on conditional
GANSs [42] and conditional VAEs [54] demonstrate the fea-
sibility of conditioning image generation on external inputs
but often suffer from limitations in image quality and train-
ing stability [16, 30, 31, 44]. More recently, diffusion mod-
els [9, 25, 39,49, 55, 56, 65] have emerged as state-of-the-art
approaches due to their ability to generate high-fidelity and
diverse images through a gradual denoising process. Mean-
while, ControlNet [74] enhances diffusion-based models by
incorporating an auxiliary network that injects explicit struc-
tural conditions—such as edge maps, depth maps, or human
poses—into the generation pipeline. This allows for fine-
grained control over the output while maintaining the quality
and diversity of diffusion models. Inspired by, but distinct
from the prior work above, we tackle the new problem of
controllable tactile image generation.

B. Detailed Methodology

We present CONTROLTAC, a controllable framework for
generating realistic tactile images to scale up tactile dataset
in downstream tasks, using only a single reference tactile
image along with contact force and contact position. The
key innovation lies in leveraging the reference tactile image
to preserve contact texture and color, while incorporating
physical conditions—force and contact location—through
a two-stage conditional tactile generation pipeline. This
design ensures the generated tactile images are both realis-
tic and physically consistent, enabling effective tactile data
augmentation.

In this section, we first introduce the architecture of our
two-stage conditional tactile generation framework, which
includes a force-control generator and a position-control gen-
erator (Sec. B.1). Then, we demonstrate how to effectively
leverage the generated data for downstream tasks such as
force estimation, contact pose estimation, and object classifi-
cation (Sec. B.2). The overall architecture of our framework
is illustrated in Fig. 4.

B.1. Two-stage Conditional Tactile Generation
Framework

We propose a two-stage conditional tactile image generation
framework that incorporates force and contact position as
controllable physical priors. The model also leverages a ref-
erence tactile image to preserve color and texture cues. (1)
In the first stage, the force-control generator takes a refer-
ence tactile image and the relative force as input to generate
a target image that reflects the desired force. (2) In the
second stage, we fine-tune the pretrained force-control gen-
erator with contact masks using ControlNet [74] to control
the contact position of generated tactile images.

Force-Control Generation. To generate a tactile image
corresponding to a target force, we train a conditional dif-
fusion model defined as y = D(F;(z*)), AF), where the
Diffusion Transformer (DiT) [45] is used as the backbone
and DDIM [55] serves as the sampler to improve both gen-
eration quality and inference efficiency. In this formulation,
the force-control generator is denoted by F(-). The target
tactile image is represented by y € RW *H >3 while the ref-
erence tactile image is denoted as x € RW>#H*3_The latent
representation z*) = £(x) is obtained by encoding x using
the frozen pretrained encoder £(-) introduced in SANA [65].
The output of the diffusion model is subsequently decoded
using the corresponding frozen pretrained decoder D(+), also
proposed in SANA [65]. The model is conditioned on a
relative force vector AF € R3, computed as the difference
between the desired target force F'; and the initial force F'; as-
sociated with the reference image: AF = F; —F;. To enable
force-guided generation, we train the force-control genera-
tor F(-) using the dataset proposed in FeelAnyForce [50],
which provides ground-truth annotations of 3D force vectors.

Position-Control Mask. We represent the position-
control signal with a compact, per-object binary template
that we call the contact mask. Notably, This mask is a global,
object-level template but not a per-frame local contact patch.
It is computed once from a lightly pressed reference tactile
image (initial contact) and then kept fixed for that object (see
Fig. 6). Consequently, its shape is independent of the applied
force. During training and inference, we never re-estimate
the mask from the current frame. Changes in contact position
are encoded solely by applying a rigid in-plane transform
(translation + rotation) to this fixed template. For accuracy,
we manually register each mask to its reference tactile im-
age with +1 pixel translational and +-1° rotational precision.
Additional robustness studies are provided in Appendix F.1.
This representation avoids common pitfalls when defining
contact position: (1) it avoids the ambiguity of using a
center point (, y) plus an angle, which becomes ill-posed
when the object footprint exceeds the sensor area; (2) it
avoids the inconsistency of depth map or edge-based meth-
ods (e.g., Canny [8]), whose detected boundaries can vary
with the pressed region and force. In summary, “mask” de-
notes a fixed per-object template for position control, while
force-induced local area changes are not encoded by the
mask.

Position-Control Generation. Building upon the pre-
trained force-control generator F¢(-), we utilize the Con-
trolNet [74] to fine-tune the force-control generator using
the contact mask as a control signal. Specifically, we follow
the approach from PixArt-6 [9], where the ControlNet is
applied to the first half of the DiT [45] blocks. The out-
put of each block is added to the output of the correspond-
ing frozen block, serving as the input to the next frozen
block. The generated tactile image y’ satisfying the target



force and target contact position is obtained from the model
y' = D(F.(2),2(®) AF)), where F,.(-) is the generator
built upon the force-control generator with the ControlNet.
We treat the contact mask ¢ € R"W*H*1 a5 the position-
control signal, and z(®) = £(c) is the latent representation
of ¢ obtained from the autoencoder of SANA [65]. We
train the model on the aligned contact masks from Feel Any-
Force [50].

B.2. Data Augmentation for Downstream Tasks

After training our two-stage conditional tactile generation
framework, we apply the generated tactile images for data
augmentation. Broadly, the generated images support data
augmentation in three settings: tasks with force labels, tasks
with pose labels, and tasks where labels remain unchanged
after augmentation. Specifically, we select three tasks that
require both realistic and large-scale data for effective aug-
mentation: force estimation, contact pose estimation, and
object classification.

Force Estimation. In this task, we adopt the force esti-
mation framework proposed in FeelAnyForce [50], which
is based on a ViT [13] encoder pretrained on DINOv?2 [43].
The framework takes tactile images as input, consisting of
a regressor that predicts the 3D force vector and a decoder
that reconstructs the depth image during training to enhance
the learning of the tactile-force relationship.

Contact Pose Estimation. In this task, we retain the
ViT [13] encoder pretrained on DINOv2 [43] from the force
estimator in FeelAnyForce [50]. The regressor output is
changed from the 3D force vector to the x and y coordinates
of the contact center, as well as the angle of the contact
object relative to the tactile sensor. Additionally, the de-
coder’s supervision is shifted from depth to the contact mask.
Through these modifications, we obtain a pose estimator.

Object Classification. To ensure fair comparison, we
use three common classifiers: a plain CNN, a ViT [13] with-
out pretraining, and a ViT pretrained on ImageNet [10]. The
classification task involves six objects: five from the Fee-
lAnyForce dataset [50]—banana, marker, nectarine, ring,
and thick cylinder—and one additional object we collected,
the T-shape. Appendix J.5 shows the objects and tactile im-
ages (Fig. 14), and Appendix G provides more details on the
classifiers.

C. Implementation Details

C.1. Training Configuration

Both force-control generation component and position-
control generation component are trained using the
AdamW [38] optimizer and a cosine annealing learning rate
scheduler. For the force-control generator, the learning rate
is annealed from an initial value of 1 x 10~ to a final value
of 1 x 10~°. For the position-control generator, the learning

rate decays from 1 x 107° to 1 x 10~°. Each model is trained
for 75,000 steps on a single NVIDIA RTX A5000 GPU with
a batch size of 4. The loss function used for training is a
weighted combination of L1 loss and mean squared error
(MSE)Z 0.5 x ACLI + 0.5 % ACMSE~

C.2. Metrics

We evaluate our models using several commonly used met-
rics, including mean squared error (MSE), L1 loss, mean
absolute error (MAE), and structural similarity index mea-
sure (SSIM). Specifically, the following metrics are reported:
¢ Mean Squared Error (MSE): MSE = % S (yi—10i)?
« L1Loss: L1 = 23" . |y; — g

* Mean Absolute Error (MAE): MAE = L ™% | |y, — 4|
e Structural Similarity Index Measure (SSIM):

_ (2 x b +Cl)(2‘7m1 +C2)
SSIM(z,y) = Gyt o orecn

D. Details of Baselines

D.1. Hybrid Force-Position Conditional Diffusion
Model:

In this approach, we train a diffusion model y =
D(Fn(z™),2(°), Af)). Here, the latent representation of
initial tactile image z(®)_ contact mask z(%), and target force
change Af are simultaneously input into the diffusion model
Fn(-), which is then passed into the autodecoder D(+) to gen-
erate the output y.

D.2. Separate Force-Position Conditional Diffusion
Model:

In the first stage, we follow the previous force-control genera-
tor method by inputting the latent representation of the initial
tactile image 2™ and the target force change Af into the
force-control generator F(-) to produce a latent representa-
tion of the tactile image z*) = Fr (), Af) that satisfies
the target force. In the second stage, this generated latent rep-
resentation z(*"), along with the latent representation of the
contact mask z(®), is input into the position-control genera-
tor F,(-). The output z&) = F, (2, 2(°)), which satisfies
both the target force and contact position, is then decoded to
produce the final tactile image y = D(z)).

E. Details of Experiments

In this section, we evaluate our proposed framework through
extensive experiments in tactile image generation, data aug-
mentation in three downstream tasks, and three real-world
experiments. We firstly evaluate the generation quality of
our two-stage conditional tactile generation framework with
two baselines in Sec. E.1. Then, we perform three down-
stream tasks to evaluate the data augmentation capability of
our framework (Sec. E.2, E.3, E4).

Finally, we deploy the trained force estimator and pose
estimator into three real-world experiments (Sec. E.5).



We train the force-control generator component using
20,000 tactile images with corresponding 3D force vec-
tors from Feel AnyForce [50]. The ControlNet for position-
control generation is trained using 7,000 tactile images,
where each object contributes 300 unique contact positions,
also paired with 3D force vectors from FeelAnyForce [50].
More training details are shown in Appendix C.

E.1. Generation Quality Evaluation

In this section, we compare the generation quality of our two-
stage conditional tactile generation framework with three
baselines: (1) a hybrid force-position conditional diffusion
model, which trains conditional diffusion with both force and
position at the same time; (2) a separate-control pipeline,
which trains the position-control using the generated images
from the pretrained force-control (in the first stage) model as
input; (3) the first stage of CONTROLTAC, which performs
augmentation conditioned only on force. For training data,
7,000 samples are used to train the hybrid force-position con-
ditional diffusion model. For the separate-control pipeline,
we use 20,000 samples to train the force-control generator
and 7,000 samples to train the position-control generator.
Details of the baselines and training procedures for the three
models can be found in Appendix D.

Evaluation. To compare the quality of tactile images
generated by CONTROLTAC with two other baseline methods
and the first stage force-control generation, we calculate
SSIM (Structural Similarity) and pixel-wise MSE (Mean
Squared Error) on the test data of real tactile images. The
test data, which comes from FeelAnyForce [50], includes
the same objects as the training set but with different contact
positions and forces. In Table 1, we present a comparison of
SSIM and MSE for four methods; in Fig. 6, we show tactile
images generated by these methods.

Key Findings. From Table 1, we can see that our
method outperforms all baselines in both MSE and SSIM.
For SSIM, it indicates that CONTROLTAC performs slightly
better than the other baselines in terms of structure, gel de-
formation, and brightness information. For the MSE, which
highlights the pixel-level difference and the generation pre-
cision, CONTROLTAC clearly outperforms the other base-
lines. Compared to our single-stage force-control model, our
two-stage conditional tactile generation framework achieves
comparable performance while enabling additinoal control
over contact posision. For the hybrid framework, the lower
performance is mainly due to that force control requires
more data than position control. As a result, using Control-
Net [74] to finetune the pre-trained force control generator
on a small amount of position data yields better performance.
In the separate-control pipeline, errors from both the force-
control and position-control generators accumulate, resulting
in significantly worse overall performance. Additionally, we
provide a detailed failure analysis in Appendix .

E.2. Downstream Task: Force Estimation

In this section, to demonstrate that CONTROLTAC can gener-
ate realistic tactile images corresponding to the target force,
we validate it by training a force estimator using the gener-
ated tactile images.

We first evaluate the effectiveness of the force-control
generator in CONTROLTAC by comparing the performance
of force estimators trained on various combinations of real
and generated data. We use 1,000 different contact positions
from the dataset as the real dataset and augment 20 or 40
forces with the force-control generator, resulting in datasets
of 20,000 and 40,000 generated samples, respectively. We
then evaluate the performance by co-training on varying
amounts of real data (from 1,000 real data to 20,000 real
samples) combined with the augmented data.

As shown in Fig. 5, augmenting the real data (1,000 sam-
ples) with a larger amount of generated data significantly
reduces the MAE compared to using the real data alone.
Moreover, with the generated dataset, the model achieves the
same performance as training on the full real dataset (20,000
images) with only 8,000 real images. This suggests that the
generated data effectively enrich the force distribution at
each contact position, enhancing the training of the force
estimator. Furthermore, combining larger quantities of both
real and generated data yields the best performance, which
highlights the realism and utility of the generated data.

After validating the force-control generator in CON-
TROLTAC, we evaluate the full framework. We use CON-
TROLTAC to generate 15,000 or 30,000 tactile images with
750 different positions. We evaluate the performance by
adding those augmented images to different number of real
data for co-training (from 1,000 to 15,000 real samples).

To demonstrate that training a high-performance force
estimator requires covering different contact positions, we
divided the real data according to the angles because the
color of tactile images varies across different contact angles.
Visualization of different angles can be found in Fig. 6 and
Appendix J.1. As shown in Fig. 7, we report the MAE of
force estimation under various training data settings. In-
corporating position-control generation helps mitigate the
challenges from limited angular coverage in the real data
and significantly improves performance even with a small
subset of real data, especially when the real data covers only
a limited range of angles. In Appendix F, we add more
experiments and analysis to the force estimations.

E.3. Downstream Task: Pose Estimation

In this section, to demonstrate that CONTROLTAC can gen-
erate tactile images aligned with the target contact position,
we train a pose estimator using the tactile images generated
by CONTROLTAC. To evaluate performance, we train three
separate pose estimators: one for a cross, one for three cylin-
ders with varying curvatures and widths, and one for unseen
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Figure 6. Qualitative Generation Results. The first column displays 3D previews of six objects, followed by the input tactile image
(Ref. Image) in the second column and the Contact Mask in the third column. The fourth column shows the initial force (top) and target
force (bottom). Subsequent columns depict the Ground Truth (G.T.) and results from CONTROLTAC, the hybrid force-position conditional
diffusion model (Hybrid), and the separate-control pipeline (Separate). In part ), we visualize the generated images for comparison; in part
B), we visualize the error maps highlighting the differences from the ground-truth tactile image. Complete results and force-only generation

results are shown in Fig. 11 and Fig. 12 respectively in Appendix J.

MAE Impact: Angle Coverage and Data Type
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Figure 7. Force estimation performance (MAE) with different data.
The sample sizes of 750, 3,750, 7,500, 11,250, and 15,000 are
shown as 1, 1/4, 2/4, 3/4, and 4/4 of the contact angles.

shapes, including a T-shape and a type-c USB.

For training the pose estimators, we use a single reference
image to generate 30,000 images for each object (5,000 posi-
tions and 6 forces). We randomly sample varying number of
tactile images from the generated dataset. For the real tactile
dataset, each object has 500 unique contact positions, and

we randomly select 4-8 forces per position to build a dataset
with 3,000 samples for each object. For the unseen T-shape
and type-c USB, only generated tactile images are used for
evaluation. In the test set, each of the three cylinder types
and the cross are annotated with 30 contact positions across
multiple force levels from the Feel AnyForce [50] dataset.
For the T-shape and type-c USB, we collect 30 contact posi-
tions at a single force level. Notably, since we generate the
image and label through 2D global mask, the pose label of
the image is the centroid of the global mask instead of 2D
local area, where it can handle objects which are larger than
the sensor.

As shown in Table 5, pose estimators trained solely on
tactile images generated by CONTROLTAC achieve strong
performance across all objects, including the unseen T Shape
and USB. Notably, training with generated data alone often
outperforms using simulated data from Taxim [52], which
suffers from reduced realism and lower performance, as well
as traditional PCA-based methods. Even with a relatively
large real dataset, generated data provides significant advan-
tages, since capturing tactile data that fully covers all contact



Table 5. Pose estimation errors (in pixels and degrees) under differ-
ent settings.

Training Set X| Y| Angle]
Cylinder (3 Types)

PCA 15 13 22
3,000 real 9 8 4
6,000 real 8 8 4
3,000 sim 21 20 7
12,000 sim 17 15 6
36,000 sim 18 15 6
3,000 gen (fixed) 13 13 6
12,000 gen (fixed) 9 8 5
3,000 gen (unfixed) 9 9 5
6,000 gen (unfixed) 7 6 3
12,000 gen (unfixed) 4 5 3
3,000 real + 3,000 gen 5 4 4
3,000 real + 12,000 gen 3 4 3
3,000 real + 3,000 sim 11 10 5
3,000 real + 12,000 sim 12 13 6
3,000 real + 36,000 sim 14 13 6
Cross

PCA 56 19 18
1,000 real 7 6 2
3,000 real 6 6 2
1,000 sim 25 23 7
4,000 sim 19 18 5
12,000 sim 18 19 5
1,000 gen (fixed) 11 13 5
4,000 gen (fixed) 7 9 4
1,000 gen (unfixed) 6 9 2
3,000 gen (unfixed) 4 5 2
4,000 gen (unfixed) 3 4 1
1,000 real + 1,000 gen 4 5 1
1,000 real + 4,000 gen 2 4 1
1,000 real + 1,000 sim 15 14 4
1,000 real + 4,000 sim 17 16 4
1,000 real + 12,000 sim 18 14 5
T-shape (Unseen)

1,000 gen (unfixed) 5 5 4
4,000 gen (unfixed) 4 5 2
USB (Unseen)

1,000 gen (unfixed) 12 11 4
4,000 gen (unfixed) 8 9 3
16,000 gen (unfixed) 6 6 3
20,000 gen (unfixed) 5 4 3

positions and angles is extremely challenging.

Moreover, combining a small amount of real data with
generated data further improves performance. For example,
for the Cylinder (3 Types) object, mixing 3,000 real samples

with 12,000 generated samples reduces the X and Y errors
to 3 and 4 pixels, and the angle error to 3°, outperforming
6,000 real samples or 36,000 simulated samples alone. Sim-
ilarly, for the Cross object, 1,000 real samples combined
with 4,000 generated samples achieve X and Y errors of
2 and 4 pixels, and an angle error of 1°, again surpassing
single-source training. In contrast, mixing real data with
simulated samples provides limited benefit and, in some
cases, can even degrade performance, highlighting the lim-
ited realism of simulator data. These results demonstrate that
CONTROLTAC-generated data not only complements real
data by covering hard-to-capture tactile scenarios, but also
maximizes performance gains when used in mixed training,
while improving generalization to unseen objects.

We also evaluate the pose estimator under varying versus
fixed forces (denoted as “fixed” in Table 5, with the fixed
force set to the median value of 6.5 N). Using varying forces
leads to better performance, reflecting the natural variation of
contact forces during inference. Visual results for Taxim [52]
can be found in Figure 13 in Appendix J.4.

E.4. Downstream Task: Object Classification

To evaluate the generalizability of CONTROLTAC and com-
pare it with other data augmentations, we conduct an unseen
object classification task. Objects and tactile images are
shown in Fig 14 in Appendix J.5.

In this experiment, we select one reference tactile image
from each of the six objects and use CONTROLTAC to gener-
ate tactile images under varying force and contact positions.
For comparison, we consider a traditional data augmentation
pipeline [41, 66], which applies geometric and color-based
transformations to the selected reference image. The geo-
metric transformations include rotations (eight types at 45°
intervals over 360°), flipping (vertical, horizontal, and both),
scaling factors (0.8, 1.0, 1.2), and translations along two
axes by [-20, 0, 20], yielding 864 augmented images. The
color transformations apply hue shifting to synthesis 6 color
variants, resulting in 5,184 augmented images.

We evaluate classification performance using three differ-
ent models: a CNN, a ViT without pre-training, and a ViT
with pre-training. We train the models with data samples
of size 2,400 and 4,800 using three augmentation methods.
The results are summarized in Table 3. Across all models
and dataset sizes, CONTROLTAC consistently outperforms
traditional augmentation methods, with especially notable
improvements in the ViT-based models. This demonstrates
the superior utility of conditional tactile generation in en-
hancing downstream classification performance.

E.S. Case Study: Real-world Experiments

In this section, we utilizes the force estimator and pose esti-
mator by training with augmented dataset in three real-world
experiments: Object Pushing, Real-time Pose Tracking, and



Object Pushing

Pose Tracking

Figure 8. Qualitative examples of real-world experiments.

Precise Insertion.

Object Pushing. In this experiment, we estimate the
pushing force between the robot and four objects: a 1 kg
calibration weight made of metal, a caliber cylinder full of
water (0.559 kg) or almost full (0.503 kg), and a glass bottle
of 0.63 kg. We utilize a URS robot with a ATT Axia80 force
sensor to collect the ground truth forces for pushing. Five
pushes of approximately 15s each per object are conducted
at a low velocity. The overall experiment setting is shown in
Fig. 8.

For evaluation, we compare our model trained on dataset
augmented by the force-control generator with the model
trained on the real data. As shown in Table 4, the key finding
is that the force estimator trained using generated images
also reaches similar performance to force estimator trained
with the real dataset, which highlights that the force estimator
trained with generated data generalizes well to more complex
real-world scenarios and new objects with various textures,
materials, and weights.

Real-time Pose Tracking. To evaluate the performance
of our pose estimator, we conduct a real-time pose tracking
experiment. Specifically, we press the printed cylinder, cross,
and T-shape object into the sensor and change the object pose
by rotating and translating. In this setting, our model can
track the pose in real time with 10 Hz, which highlights the
practicality of the model trained with our augmented data in
this dynamic real-world scenario. A visualization of the task

is shown in Fig. 8.

Insertion Task. For the insertion task, we 3D print three
different objects (a cylinder, a cross-shaped object, a T-shape
object) and a hole. Also, we set up a type-c insertion task for
inserting the USB into the charger. We utilize the XArm7
robot arm with two GelSight Mini tactile sensors to accom-
plish the task using our trained pose estimator. Notably, the
tolerance of this insertion task is only 3 mm. See Fig. 8 in
Appendix and Appendix H for more details.

To evaluate the performance of our model, we conduct
20 insertion trials for each object type. Our force estimator
achieves a success rate of 90% for the cylinder and 85% for
both the cross and T-shape objects. These results highlight
the practicality of our augmented data, demonstrating that a
model trained with data augmented from a single reference
image can achieve strong performance on a challenging pre-
cise insertion task with only 3 mm of tolerance. We further
evaluated type-c insertion by training a pose estimator with
tactile images generated by ControlTac, achieving an impres-
sive 75% success rate. This demonstrates the effectiveness
of our approach. The real object and corresponding tactile
images of the Type-C connector are provided in Fig. 15 in
Appendix J.6.



F. Additional Experiments

F.1. Robustness Validation of Contact Mask Align-
ment

To evaluate the sensitivity of position control to inaccura-
cies in contact mask alignment, we conducted a series of
controlled experiments by applying perturbations in three
forms: scaling (S), translation (T), and rotation (R). The
performance was measured using MSE and SSIM, and the
results are summarized in Tables 6 and 7. For individual
perturbations, scaling the mask within the range of 0.8 to
1.2 produced only negligible variations in both MSE and
SSIM, suggesting that the method is largely insensitive to
scale changes. Translation up to 4 pixels and rotation up
to 2 degrees, which correspond to typical alignment errors
in practice, also resulted in no significant degradation in
the quality of the generated outputs. Even when scaling,
translation, and rotation perturbations were combined, the
generated results remained stable and acceptable. It should
be emphasized that the contact mask is primarily used to
determine the contact position, whereas the contact area is
governed by force control and is therefore unaffected by
such perturbations.

Table 6. Individual Perturbation Analysis

Perturbation Type Parameter MSE| SSIM?
Scaling (S) 1.0 23 0.83
1.1 23 0.83
1.2 24 0.83
0.9 23 0.83
0.8 24 0.83
Translation (T) 2 px 23 0.83
4 px 24 0.83
6 px 25 0.82
Rotation (R) 2° 23 0.83
4° 25 0.82
6° 27 0.82

Table 7. Combined Perturbation Analysis

Perturbation Combination MSE| SSIM?
S09+T4+R2 23 0.82
S1.1+T4+R4 26 0.82
S0.8+T6+R6 28 0.82
S1.1+T6+R6 28 0.82

F.2. Impact of Data Composition on Model Perfor-
mance

In our experiments, we observe that training the model with
a combination of all-angle real data and generated data re-
sulted in slightly worse performance compared to using only

real data. This can be explained from two perspectives.

(1) First, the performance of the force estimator model
is limited by its own capacity. As shown in Table 8, when we
trained the model with varying amounts of real data (from
10k to 15k), we found that the MAE improvement plateaued
once the data size exceeded 13k, indicating that adding more
real data did not lead to significant gains. (2) Second,
although the generated data is generally of high quality,
it inevitably contains small errors. As the proportion of
generated data increases, these errors tend to accumulate and
negatively impact model training. Specifically, when training
solely on different amounts of generated data, the MAE
fluctuates as the data size increases, suggesting the presence
of error accumulation. Similarly, when mixing real data
with a large amount of generated data, model performance
is somewhat degraded—for example, the MAE for 15k real
+ 30k generated is higher than for 15k real + 15k generated.

Nevertheless, the errors in the generated data are minor
and do not cause a significant drop in overall model perfor-
mance. This indicates that while excessive generated data
can “dilute” the contribution of real data, it does not funda-
mentally compromise the results (see Table 8). Furthermore,
even when using a much larger amount of generated data
(45k or 60k) in combination with real data, the performance
does not deteriorate excessively, alleviating concerns about
the quality of the generated data.

Table 8. MAE of Force Estimator under Different Data Combi-
nations. Gen refers to data generated by CONTROLTAC, while
Real refers to force estimator trained by real data from FeelAny-
Force [50].

Training Data Type  Data Size MAE |
Real 10k 0.061
Real 11k 0.057
Real 12k 0.055
Real 13k 0.051
Real 14k 0.054
Real 15k 0.053
Gen 15k 0.21
Gen 30k 0.17
Gen 45k 0.18
Gen 60k 0.16

Real + Gen 15k + 15k 0.055
Real + Gen 15k + 30k 0.060
Real + Gen 15k + 45k  0.058
Real + Gen 15k + 60k  0.061
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Figure 9. Failure cases on banana and flattened ring.

F.3. Impact of Contact Position Count on CoN-
TROLTAC

In this section, we present the effects of training CON-
TROLTAC with different numbers of contact positions and
using data generated by CONTROLTAC to train the force
estimator. The results of our experiments are summarized in
Table 9.

Table 9. MAE results based on different contact position counts
and data types. Gen refers to data generated by CONTROLTAC,
while Real refers to force estimator trained by real data from
FeelAnyForce [50].

Contact Position Count Data Type MAE |
100 30k Gen 0.272
100 30k Gen + 15k Real ~ 0.077
200 30k Gen 0.207
200 30k Gen + 15k Real ~ 0.067
300 30k Gen 0.174
300 30k Gen + 15k Real ~ 0.060

Table 9 indicates that as the number of contact positions
increases, the MAE for models trained solely on generated
data decreases. This suggests that more contact positions
provide richer feature information, thereby enhancing the
model’s predictive capability. For instance, with 300 contact
positions, the MAE drops to 0.174, a significant improve-
ment over the 0.272 achieved with 100 positions.

Furthermore, incorporating real data results in even lower
MAE values, particularly with 100 contact positions, where
the MAE decreases from 0.272 to 0.077. This demonstrates
the advantage of combining generated data with real data.

Similarly, for 200 and 300 contact positions, the inclusion of
real data leads to reduced MAE values of 0.067 and 0.060,
respectively. This indicates that while generated data can
effectively improve model performance, the addition of real
data remains essential, especially with smaller datasets.

In summary, increasing the number of contact positions
and integrating real data both significantly enhance the per-
formance of the force estimator, suggesting avenues for fur-
ther optimization in future research.

G. Classifier Architectures

G.1. CNN Classifier

We design a convolutional neural networ (CNN) for image
classification, consisting of four convolutional blocks fol-
lowed by two fully connected layers. The architecture is as
follows:

* Input: RGB images of shape (3,224, 224)
¢ Convolutional Block 1:
Conv2d: 3 — 32, kernel size 3 x 3, stride 1, padding 1
BatchNorm2d
ReLU activation
MaxPool2d: 2 x 2
¢ Convolutional Block 2:
— Conv2d: 32 — 64
— BatchNorm2d
— ReLU activation
— MaxPool2d: 2 x 2
¢ Convolutional Block 3:
— Conv2d: 64 — 128
— BatchNorm2d
— ReLU activation



— MaxPool2d: 2 x 2
¢ Convolutional Block 4:
Conv2d: 128 — 256
— BatchNorm2d
ReLU activation
MaxPool2d: 2 x 2
* Flatten Layer: Feature map of shape (256, 14, 14) is flat-
tened to (50176)
¢ Fully Connected Layers:
— Linear: 50176 — 512
— ReLU + Dropout (p = 0.5)
— Linear: 512 — 6 (number of classes)

G.2. ViT Classifier

We use the Vision Transformer (ViT) architecture [13],
specifically the vit_base_patchl6_224 variant imple-
mented via the t imm library [64]. This transformer-based
model operates on image patches and employs self-attention
mechanisms.
¢ Patch Size: 16 x 16
¢ Input Resolution: 224 x 224
* Number of Patches: 196 (i.e., 14 x 14 patches)
¢ Transformer Encoder:
Embedding dimension: 768
Number of transformer layers (depth): 12
Number of attention heads: 12
— MLP dimension: 3072
¢ Classification Head: The original head is replaced with:
— Linear: 768 — 6
 Pretraining Settings:

— ViT with Pretraining: The model is initialized with
weights pretrained on ImageNet 2012 [10], providing a
strong starting point for transfer learning.

— VAT without Pretraining: The model is trained from
scratch using random initialization, without access to
any external datasets.

H. Details of Precise Insertion

For the precise insertion task, we 3D print three different
objects and a hole: a (7 cm-long) cylinder with a diameter of
(7 mm), a (7 cm) by (3 cm) cross-shaped object with (7 mm)
diameter, a (7 cm) by (3 cm) T shape object with (7 mm)
diameter, and a hole measuring (5 cm) in height and (3 cm)
in depth with (10 mm) diameter. For the USB insertion task,
we let the robot to insert the type-c cable into a charger. To
finish the insertion task, we let the XArm7 with two Gelsight
Mini grasp the object above the hole with a random angle
and in-hand position and then adjust the pose and position
according to the estimation result. The setting is shown in
Fig. 8.

For the task setting, the hole has been set up in a known
position, where the robot can reach the location above it.
To finish the insertion, the robot need to adjust it’s in-hand

pose according to its initial grasping. Specifically, the pose
estimator first predict the object’s pose on the tactile sensor.
Then, we compute the Euclidean distance from the estimated
pose to the center. This distance is converted from pixel units
to real-world units using a scaling factor of 1 pixel = %mm.
For estimation-based robotic control, the robot adjusts its
end-effector by rotating along the Rx axis and translating
along the y-axis based on the predicted pose, which align
with the object vertically above the hole.

I. Failure Analysis

We acknowledge certain limitations arising from the re-
stricted diversity of the training set, where all contact objects
are made of PLA and predominantly exhibit curved surfaces.
Consequently, the model shows weaker generation perfor-
mance for objects with flat surfaces, rich textures, or varying
hardness, such as flattened rings and bananas, as illustrated
in Fig. 9. For clearer visualization, we subtract the back-
ground and apply a constant offset of 127 to shift pixel values
into a valid display range. To address these limitations, we
augmented the training set of 20,000 samples with 1,000
additional tactile images of flat-surfaced cubes. This targeted
addition led to a clear improvement in generation quality
for previously unseen flattened rings (MSE reduced from
35 to 27; SSIM increased from 0.80 to 0.83), demonstrating
that even a relatively small amount of domain-specific data
can substantially enhance performance in underrepresented
scenarios.

J. Addition Visualizations

In this section, we provide additional visualizations to clarify
the concepts discussed.

J.1. Visualization of Various Angles of Different Ob-
jects

In this section, we visualize the various angles of different
objects. Fig. 10 provides valuable insights into how angle
rotation can lead to dramatic changes in the tactile image’s
color distribution.

J.2. Visualization of Error Map

In this section, Fig. 11 illustrates the error map of CON-
TROLTAC compared to two baseline models. It is evident
that CONTROLTAC significantly outperforms the other two
baseline models.

J.3. Visualization of Generated Image using Force-
Control Generation Component

In this section, we showcase the visualization results using
the force-control generation component of CONTROLTAC.
Fig. 12 presents the generated tactile images for the same
contact position, demonstrating excellent results and the
effectiveness of this component.



J.4. Analysis of Simulated Tactile Images

In this section, we present tactile images generated using
Taxim [52]. As shown in Fig. 13, the simulated images lack
realism, highlighting the limitations of current simulation
methods for tactile data.

J.5. Object and Tactile Image Visualization for
Classification

In this section, we present six objects used in the classifica-
tion task along with their corresponding tactile images, as
shown in Fig. 14.

J.6. Visualization of the Type-C Connector Inser-
tion Task

To better illustrate the Type-C connector insertion task,
Fig. 15 shows both the real Type-C connector and its corre-
sponding tactile image used in this experiment.
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Figure 10. Visualization of various angles. Note: The rotational symmetry of spheres renders their angular representations redundant, and
thus they are not included here.
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Figure 12. Generated tactile images using the force-control generation component of CONTROLTAC at the same contact position.

Rotation

o -----

Slim
Cylinder

Figure 13. Simulated tactile images using Taxim [52].
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Figure 14. Six objects and their corresponding tactile images used in the classification task.
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Figure 15. Real Type-C connector and corresponding tactile image.
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