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Abstract

The costs of generative model compute rekindled promises
and hopes for efficient data curation. In this work, we inves-
tigate whether recently developed autoguidance and online
data selection methods can improve the time and sample
efficiency of training generative diffusion models. We inte-
grate joint example selection (JEST) and autoguidance into
a unified code base for fast ablation and benchmarking. We
evaluate combinations of data curation on a controlled 2-D
synthetic data generation task as well as (3 x 642)-D im-
age generation. Our comparisons are made at equal wall-
clock time and equal number of samples, explicitly account-
ing for the overhead of selection. Across experiments, au-
toguidance consistently improves sample quality and diver-
sity. Early AJEST —applying selection only at the begin-
ning of training— can match or modestly exceed autoguid-
ance alone in data efficiency on both tasks. However, its
time overhead and added complexity make autoguidance
or uniform random data selection preferable in most situ-
ations. These findings suggest that while targeted online
selection can yield efficiency gains in early training, robust
sample quality improvements are primarily driven by au-
toguidance. We discuss limitations and scope, and outline
when data selection may be beneficial.

1. Introduction

Scaling trends have made modern generative modeling in-
creasingly expensive, shifting attention from model- and
hardware-centric efficiency towards data efficiency (e.g.,
[3, 5, 16, 24, 31]). Evidence suggests that targeted cura-
tion can improve performance by removing redundancy and
noise [10]. Diffusion models, however, aim to approximate
full data distributions, raising the question of whether data
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selection can help without harming diversity; recent work
indicates pruning can help in some regimes [4].

We study online data selection for diffusion models
through Autoguided JEST (AJEST), which integrates joint
example selection (JEST) with autoguidance. We evaluate
on a controlled 2-D task and Tiny ImageNet at 3 x 64 x 64.
Comparisons are made at equal wall-clock time and equal
number of samples, explicitly accounting for selection over-
head. Our focus is practicality: does targeted early selection
provide efficiency gains, and how does it interact with auto-
guidance? Our contributions and findings are as follows:

1. A unified code base to run combinations of autoguidance
and JEST for online data curation of diffusion models'

2. An evaluation harness for time and data efficiency of
data curation during diffusion model training.

3. Early AJEST can match or modestly exceed autoguid-
ance in data efficiency on both a 2-D and (3 x 642)-D;
however, its time overhead and added complexity makes
it less attractive for most applications.

4. A transparent discussion of limitations and where data
curation hits limits.

Related work. Data selection and active learning span
diversity-based approaches (e.g., k-center and submodular
selections [1, 29]) and gradient/importance-based methods
[2, 22, 28, 30, 37], as well as instance difficulty and loss-
based strategies [6, 9, 11, 15, 27, 34, 35]. However, existing
literature also suggests that random data selection can out-
perform these approaches in many settings [25].

JEST [8] formalizes online joint selection using a
learner—reference pair and has been shown capable of re-
placing knowledge distillation in contrastive setups [36].
For diffusion models, classifier-free guidance [13] improves
fidelity at the cost of diversity, whereas autoguidance [18]
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Figure 1. Visual summary. (a) JEST: a large pre-trained foundational reference model is used to select data to train the main model,
which can be smaller in size; inference is done using only the main model. (b) Autoguidance: a smaller reference model is trained for
less iterations; both reference and main model score samples during the denoising process. (c) Autoguided JEST (AJEST): combination
of JEST’s training strategy and autoguidance’s small less-trained reference and collaborative denoising process. (d) Random: JEST is
replaced with uniform random data selection to act as a benchmarking baseline with independent training for the main model.

leverages a weaker guide to boost quality while better pre-
serving coverage. Our work examines how JEST-style
online selection interacts with autoguidance for diffusion
models under equal-time and equal-backprop comparisons.

2. Methods

We briefly review the core ingredients underlying the exper-
iments, but we include details in Appendix A.

Diffusion models. Diffusion models learn a family of
scores over noise levels and iteratively denoise samples
from Gaussian noise towards the data distribution [17].
Sampling follows a probability-flow ODE discretized over a
noise (time) schedule; the model provides score evaluations
that guide each denoising step. We adopt EDM/EDM?2 con-
ventions for preconditioning and training [19].

Given the cost and scale of diffusion training, online
data curation can appear appealing to reduce redundancy
while preserving performance. Here we evaluate three
regimes: an online learner—reference strategy (JEST) that
adapts to training dynamics in combination with autoguid-
ance (AJEST), a standalone autoguidance baseline, and a
cheap random subset selection baseline (see Fig. 1).

JEST. Joint Example Selection (JEST) [8] pairs a learner
with a reference model to score examples in a super-batch
and draws a mini-batch via softmax sampling over learn-
ability scores. With super-batch size B and filtering ratio f,
the update mini-batch has size b = (1— f)B. The canonical
learnability contrasts learner and reference losses and prior-
itizes examples that are easy to learn for the reference but
not for the learner. JEST can act as implicit knowledge dis-
tillation in contrastive setups [36]. Exact scoring, chunked
sampling logits, and our stability normalization are given in
Appendix A.1.

Autoguidance. Classifier-free guidance (CFG) [13]
improves fidelity at a diversity cost by mixing condi-

tional/unconditional scores. Autoguidance [18] instead
leverages a weaker guide model (smaller or less-trained) to
produce a corrective signal that boosts quality while better
preserving coverage; we follow their formulation and report
both unguided and autoguided sampling. Exact guiding sig-
nal and collaborative sampling details are in Appendix A.1.

AJEST. We integrate JEST with autoguidance for dif-
fusion models. A smaller guide (weaker version of the
learner) serves as the JEST reference. Because the learner
quickly surpasses the guide, we apply selection primarily
at the beginning of training (Early AJEST) and then con-
tinue without selection; we also report a full-selection vari-
ant for completeness. At inference, we evaluate both un-
guided sampling and autoguided collaborative sampling.

Random data selection. As a cheap control, we uni-
formly sample a mini-batch of size b from each super-batch
of size B, matching the filtering ratio and schedule used by
selective methods. This removes learner—reference scoring
entirely, yields negligible compute and memory overhead,
and provides a strong time-efficiency baseline. The train-
ing loop and optimization settings are identical to those of
AJEST and autoguidance; only the selection rule differs. In
contrast with lowering the batch size, random data selection
ensures some examples in the training dataset might never
be seen by the learner model.

3. Experiments

We compare methods under two budgets: (i) equal time
budget, explicitly including selection overhead; and (ii)
equal data budget. This allows us to evaluate both time-
and data-efficiency.

2-D Synthetic Data. We first tested our methods on Kar-
ras et al.’s 2D tree task [18]. The goal is to generate (z,y)
points with most of its probability density lying within a
tree-shaped manifold (Figure 2). This mimics low local di-
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Figure 2. Illustration of the data generation tasks. (a) Normal 2D
(z,y) samples (purple points) with noise level o (orange circle)
are pushed towards the ground truth tree to obtain the final samples
(gray points). (b) High-dimensional Normal samples are denoised
to obtain natural images matching Tiny ImageNet’s distribution.

mensionality and hierarchical detail emergence in natural
images [18]. We train simple diffusion models to sample
from one of two classes (upper half of the tree).

We use Karras et al.’s toy model architecture [18]. We
trained a small reference model for 512 iterations and a
larger main learner model for 4096 iterations, optionally ap-
plying data selection with mini-batch size b = 812, super-
batch size B = 8192 and filtering ratio f = 0.8. The
loss function is evaluated on the whole batch of 8192 data
points, but backpropagation is only executed for 20% of
those points. Details on the model and distribution are pro-
vided in Appendix A.3. Evaluation uses loss- and coverage-
based metrics (MSE, L2, mandala, and a simple classifica-
tion accuracy); precise definitions are given in Appendix C.

(3 x 642)-D Image Data. We then scale up the dimen-
sionality to Tiny ImageNet [20] using the public split (Hug-
gingFace [38]). This dataset contains 64 x 64 RGB im-
ages and its training set has 200 classes following WordNet
synsets as in ImageNet.

We trained an XS EDM2 model [19] as our main model
for 22000 iterations. We defined a smaller XXS EDM?2
model to use as the reference, and we trained it for only
5160 iterations. We used super-batch size B = 2048 and
mini batch-size b = 384, effectively applying the same fil-
tering ratio f = 0.8 as in the 2D toy task. Further details
can be found in Appendix A.4. Evaluation uses FID [12],
FD-DINOV2 [26, 32], and top-1/top-5 accuracy of samples
against a pretrained Tiny ImageNet Swin-L classifier [14];
details are given in Appendix C.

4. Results

We report data-efficiency (metrics versus number of back-
propagated examples) and time-efficiency (metrics versus
wall-clock time, including selection overhead) as defined in
Section 3. More results can be found in Appendix B.

2-D Synthetic Data. In the time-limited scenario, the
2D tree task results indicate that Early AJEST can be as

Table 1. Evaluation metrics with guidance on the 2D task. Results
are averaged over 5 runs with different random seeds. Standard
deviation is used to indicate uncertainty. Yellow-filled cells con-
tain the best scores. Undistinguishable results are marked in bold.

Average L2 Distance e

Comparison Method la score Classification score

Full Tree External Branches

Baseline 0246 +0297 061340210 073 +0.11 094 + 0.01
Same Ly AJEST 0.110 £0019  0.516+ 0.019 075 & 0.08 0.93 + 0.02
UME LLAJEST  0.118 40025 051440020 053 +£0.12 0.85 + 0.04

budget  pandom 0101+ 0.006  0.5084 0009 0714008  0.93 % 0.01
ame | Boscline 060053 0543+£003 053 +0.15 0.83 £ 0.09
oy EalyAJEST 012040029  0SIS:0030 058014 0862006

Full AJEST 01024 0.006 0507 +0.009  0.69+0.10 092 + 0.02

budget  pandom 0101+ 0.005  0.508 £ 0.005 072 % 0.07 0.93 + 0.01

time-efficient as random data selection and the baseline
trained with no data selection. Despite this, Random may
still be preferable due to its low algorithmic complexity and
memory requirements. Results also show that Full AJEST
is too time-consuming compared to other methods.

In the data-limited scenario, full AJEST performs on
a similar level to random data selection, but its added
complexity and time overhead makes it less preferable.
Early AJEST sacrifices data-efficiency in favour of time-
efficiency, but it still presents advantages over the pure auto-
guidance approach: it reaches slightly better results, while
using less examples for backpropagation. This begets the
question whether Early AJEST has the potential to unlock
better performance on tasks with higher complexity and di-
mensionality, such as image generation.

Additional results and experimentation with other
AJEST variants can be found in Appendix B.1.

(3 x 642)-D Image Data. Our Tiny ImageNet experi-
ment shows further evidence that the time overhead of Early
AJEST is negligible: it reaches results almost as good as
autoguidance on this fix time budget. AJEST proves to be
inefficient from a time-based perspective for images too.

Same as in the 2D task, Early AJEST achieved similar
results to autoguidance on the fix data budget images sce-
nario. It led to slightly better results on FID, FD-DINOv2
and Top-5 accuracy (Table 2), especially at very low data
budgets (Figure 3). However, random data selection pre-
sented better perceptual metrics compared to both Early
AJEST and Baseline. The computational overhead of Early
AJEST makes random selection preferable.

Additional results including more generated images and
other training and validation curves with all evaluated met-
rics can be found in Appendix B.2.

5. Discussion and limitations

Our study examines online data curation for diffusion mod-
els when combined with autoguidance. Two consistent ob-
servations emerge across tasks.
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Figure 3. Training loss and validation metrics on Tiny ImageNet
for EMA=0.10 and guidance weight o=2.2. Curves are shown
versus number of backpropagated examples (data-efficiency) and
wall-clock time (time-efficiency); error bars omitted for clarity.

Table 2. Evaluation metrics on Tiny ImageNet, averaging guided
single-run results from EMA=0.05 and EMA=0.10 with a=1.7
and a=2.2 respectively. Yellow-filled cells contain the best scores.
Close results are highlighted in bold.

Perceptual metrics Classification-based metrics

Comparison Method

FID FD-DINOv2 Top-1 Top-5
Baseline 30.6 624 59.8 80.6

Same
6 Early AJEST 31.0 628 58.8 79.8
me AJEST 410 949 318 546

budget
Random 275 699 454 68.8
Baseline 40.4 934 618 79.6

Same
data Early AJEST 34.7 849 60.7 80.5
budset AJEST 41.0 949 31.8 54.6
ucee Random 2.2 737 409 65.0

First, autoguidance is a strong and reliable lever for im-
proving quality while preserving diversity. It sets a ro-
bust baseline in our experiments that is difficult to surpass
with data selection alone. Early AJEST—using the guide
as the JEST reference only in the beginning of training—
can yield modest data-efficiency gains and reach time-to-
accuracy performance close to autoguidance on both the 2D
and images task. However, the dominant improvements in
coverage and fidelity are driven by autoguidance.

Second, accounting for overhead matters. Full AJEST
introduces significant runtime overhead and is consistently
unattractive in any time-limited scenario. Early AJEST
keeps the overhead negligible in our setup and can there-
fore be competitive when time is the primary constraint, but
its advantages shrink under a fixed-data budget where auto-
guidance already performs strongly. Random subsetting is
frequently competitive because of its near-zero complexity
and memory footprint.

The following limitations should be considered when

(a) 2-D Synthetic Data Task (b) (3 X 64?)-D Image Data Task
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Figure 4. Qualitative results for fixed time budget on the (a)
synthetic 2-D and (b) image generation tasks. For best viewing
and fixed data budget results, please see full page figures in Ap-
pendix B.

intepreting the results. (i) Scope: we evaluate on a con-
trolled 2-D task and Tiny ImageNet at 64 x 64; larger reso-
lutions, datasets, and conditionings may alter the trade-offs.
(ii) Metrics: while we report FD-DINOv2 and top-1/top-
5 as more rigorous alternatives to FID, definitive percep-
tual assessment remains challenging. (iii) Design choices:
we use only one reference model, one JEST parameter-
ization and a simple early/always selection schedule; al-
ternative parameters, chunking, and triggers could change
outcomes. (iv) Data selection: we deploy AJEST, Early
AJEST and a random uniform selection baseline; other
methods, as those that use small proxy models, may offer
improved synergy with autoguidance and diffusion models.
(v) Hyperparameters: EMA and guidance weight were not
exhaustively tuned; broader sweeps may shift the relative
ranking at the margins. (vi) Engineering: results reflect a
single hardware/software stack; absolute runtimes and over-
heads may vary.

Taken together, these results suggest a practical recipe:
rely on autoguidance as the main driver of sample quality
and diversity, and layer Early AJEST when training-time is
scarce or when modest gains in data-efficiency are valuable
relative to its small additional complexity. More aggressive
selection schedules or heavier scoring generally do not jus-
tify their overhead in the setting explored here.

6. Conclusions

We evaluated Autoguided JEST (AJEST) for diffusion
models on a 2-D toy task and Tiny ImageNet at 3 x 642
under equal time and data budgets. Autoguidance con-
sistently improved quality and diversity and serves as
a strong baseline. Early AJEST provided small but
measurable data-efficiency gains with a minimal time
overhead. In practice, we recommend autoguidance as



the default, with Early AJEST added when training-
time is constrained or when minor data-efficiency gains

justify the added machinery.

Future work includes

exploring richer selection scores and schedules, larger
and higher-resolution datasets, and broader metric suites.
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Autoguided Online Data Curation for Diffusion Model Training

Supplementary Material

A. Implementation details
A.l. JEST data selection

Joint example selection (JEST) samples training examples
based on a learnability score [8]. Assuming that datapoints
with indices ¢ € 1, ..., B are fed into the learner model and
samples with indices j € 1, ..., B are fed into the reference
model, the learnability score s;; is defined as...

sieorn = LE — LY (1)

Where L’ is the loss evaluated by the learner model and
L is the loss evaluated by the reference model.

The joint batch selection is done in an iterative process
with N steps by selecting n chunks of size % (Figure 5).
The first chunk CY is populated sampling from a uniform
probability distribution over all B datapoints. For each suc-
cessive chunk C',, sampling is done on a conditional proba-
bility distribution over the B datapoints given all n% previ-
ously selected datapoints that definea £ = C; U ... U C,,
set. This conditional probability distribution is modeled as
a softmax distribution that takes certain logits as input. The
logits z = (z1,...,25) are calculated adding four vector
terms of length B.

1. The (s11,...,spp) diagonal scores that feed the same
datapoint to both the learner and the reference models.

2. The sums of scores (D, Sk1; - D pei SkB) that re-
sult from only considering the selected datapoints fed
into the learner model.

3. The sums of scores (D, cjc 51k, - D e i SBk) that re-
sult from only considering the selected datapoints fed
into the reference model.

4. A penalizing term whose elements are —108 for all se-
lected datapoints in K and O for unselected datapoints.

Uniform Conditional Conditional
sampling sampling sampling

~ N N X

b/N
}b

Figure 5. Iterative sampling process for JEST data selection.

Our code implementation follows quite closely the one
published by Evans et al [8]. However, we observed that
a softmax distribution applied directly to these z logits is

highly unstable. For positive increasing scores, the expo-
nential of the logits is unbounded and quickly causes a nu-
merical overflow. We therefore applied a normalization fac-
tor to the logits before using them as input to the softmax
function. We noticed that at any given JEST iteration with
index n, the logits are calculated as the sum of n% terms.
To bound the logits during the full iterative process, we sim-
ply divided them by that number, resulting in the following
final expression:

N
a=-— (Su + Z Ski + Z Sik — Oéz) ()

ke kel

A.2. Autoguidance and hyperparameters

By Karras et al.’s terminology [18], diffusion models are
used to evolve any noisy sample Xipigar ~ P(X; Omax) from a
Gaussian distribution N (x; 02I) with maximum noise level
Omax t0 a sample matching the ground truth distribution
Xfinal ~ P(x;0) with zero noise. The following probabil-
ity flow ordinary differential equation needs to be solved:

dx, = —0 S(x,;0) do 3)

S(XU; U) = ch, log p(xcﬂ U) 4

The diffusion model is trained to predict the score for
every 0 € [0,0max and every example x, ~ p(Xq;0).
A o = t noise schedule set by a time step ¢ can be used
to obtain the final sample using an iterative approach [17].
Autoguidance improves the performance of diffusion mod-
els replacing the score from Eq. (3) with an interpolation of
scores defined as in Eq. (5):

S = aSmain =+ (1 _ a)Sref (5)

The S™" score is evaluated by the main model and the
Sref score is evaluated by an auxiliary reference model. The
two models share the same architecture and conditioning,
but the reference model is assumed to be a weaker version
of the main model: a smaller model that is trained for less
iterations. This applies a corrective force that pushes sam-
ples on each step of the denoising process towards regions
on which the reference and the main model disagree on their
predictions. This guidance is beneficial because it acts on
the assumption that both the reference and the main model
will make similar mistakes.

The guidance weight « is a key hyperparameter in our
experiments. Autoguidance influences the results for any
a > 1. If set to o = 1, the main scores are retrieved; if



set to o = 0, the reference scores are retrieved instead. An-
other key hyperparameter is the EMA length: the duration
over which an Exponential Moving Average (EMA) on the
models weights is calculated during training.

Whenever available, we use o and EMA values directly
extracted from Karras et al.’s publication [18]. For the 2D
tree task, we use their default value @ = 3. On ImageNet-64
with EDM-XS, Karras et al report the best FID metric for
a = 1.7 and EMA=0.045 and the best FD-DINOv2 met-
ric for « = 2.2 and EMA=0.105. We train with default
EMA=0.100 and EMA=0.050 values, so we adopt o = 2.2
for the first one and o = 1.7 for the second one.

A.3. 2D tree data generation task

The ground truth distribution for this task is modeled with a
mixture of multi-variate 2D Gaussians (see Figure 6). Each
brach is created out of 8 Gaussians uniformly-distributed
along its central line segment. The exact same parameters
from Karras et al [ 18] were used. The upper half of the tree
is assigned to class A -the class we aim to sample from- and
the lower half of the tree is assigned to class B. The tree
is designed to have depth level 7, meaning a branch is split
in two 7 times. To gain further resolution on our metrics
and data analysis, we define as external branches” all those
branches with depth level 5 or more.

As described in [18], we built 2D diffusion models fol-
lowing a simple multi-layer perceptron architecture. The
neural network’s input consisted of a set of (z,y) coordi-
nates and the o noise level that correlates with the time step
t of the denoising process. Four hidden layers with the same
number of neurons followed the input layer. The scalar
output was trained to represent the logarithm of the unnor-
malized probability density. Differentiating this value, the
model could also return the score function. Training was
done via exact score-matching. The loss function was de-
fined as the mean squared error between the score and the

(b)

Figure 6. Visualization of the 2D tree ground-truth distribution.
(a) A contour of the 2D tree distribution, showing which areas are
considered class A and its external branches. (b) Color map of
the logarithm of the ground-truth probability distribution function
log p. (c) A mixture of Gaussians is used to model the tree distri-
bution and its peaks are visible in the 3D plot of log p.

ground truth score scaled by a o2 factor (see Equation (7)
in O).

Following Karras et al. [18], we first trained a small ref-
erence model for only 512 iterations with hidden dimension
32. We then independently trained a larger main model with
hidden dimension 64 for 4096 iterations. We trained on a
single NVIDIA A5000 GPU. In this setup, a no-selection
baseline could be trained for 4096 iterations in approxi-
mately 23 minutes; Full AJEST increased this to ~ 36 min-
utes, while Early AJEST added only ~ 38 seconds over
baseline.

We store models every 128 training iterations and we
evaluate data and time efficiency at the latest point possi-
ble during training. For the equal wall-time scenario, this
happens at the last epoch of Baseline, the fastest method;
the closest matching checkpoints are collected from all
other methods, resulting on an average training time of
(16.6 £+ 0.5) min. For the scenario with equal number of
backpropagated examples, this happens at the last epoch of
AJEST and Random, the methods with the highest number
of filtered examples; closest matching checkpoints result on
an average of (3.3 = 0.2) million examples.

A.4. EDM2 for Tiny ImageNet

As Karras et al. [18], we used the EDM?2 diffusion model
architecture [19] for image generation. EDM2 diffusion
models are based on a UNet network with 4 blocks on its
decoder and encoder. The XS EDM2 model has 128 chan-
nels on its first UNet block, whereas the XXS EDM2 model
desgined by us has 64 channels instead. We trained these
models to solve a natural images generation task on Tiny
ImageNet [20] as found in HuggingFace [38]. The training
dataset contains 500 64 x 64 RGB images for each of its 200
classes, adding up to a total of 1 million training examples.
The categories correspond to synsets of the WordNet hierar-
chy, same as they do in the widely-used ImageNet dataset.

We know that Karras et al. [18] trained the XS model
with batch size 2048 until it had seen 2147.5 Mimg from
ImageNet, a dataset containing 1,281,167 training exam-
ples. We therefore estimated we would need to train the XS
model for 167.6 Mimg in Tiny ImageNet to achieve conver-
gence, assuming linear scaling on the training dataset size
out of simplicity. Karras et al. [18] used a smaller model
trained for 1/16th training iterations as their reference, so
we decided we could use an XXS EDM2 model trained for
5160 iterations instead of the 81845 iterations required to
go through 167.6 Mimg at batch size 2048.

We executed parallel-data distributed training on 2
NVIDIA A5000 GPUs. However, our dual GPU sys-
tem could only achieve a speed of 8.2 sec/epoch or
1.1 hs/Mimg, forcing the convergence of the XS model to
require 7.7 days. As we had seen that the best results in the
2D task could only be achieved by early data selection, we



decided to stop training the XS main model at 48 hs and
22000 iterations. However, we kept the reference model
trained for 5160 iterations. In consequence, our reference
model was trained for a 1/4th of the main model’s total iter-
ations, 4 times more what Karras et al do.

We converted the 8-bits Tiny ImageNet images into
[—1, 1] float images, and applied no other normalization be-
sides the input preconditioning from the EDM2 model. We
used Adam optimizer and we adopted Karras et al’s EDM?2
learning rate schedule [19]. However, to train with data se-
lection we follow Okanovik et al’s recommendation [25] on
how to adapt the learning rate schedule to decay as fast as
it would when training on the entire dataset (see Figure 1
from [19]).

We stored models every 500 training iterations. We fol-
lowed the same methodology as in the 2D tree task to select
a fix data and time budget for our analysis. For the equal
wall-time scenario, this corresponded to (47.73 4 0.07) hs;
for the scenario with equal number of backpropagated ex-
amples, (7.2 £ 0.2) Mimg.

B. Additional results

B.1. 2D toy example with all metrics evaluated

Results for the complete set of metrics evaluated both with
guidance and no guidance at equal wall time and equal num-
ber of backpropagated examples are presented on Table 3.
We also include visual representations of the distribution of
generated points in Figures 7 and 8 for the fixed time and
fixed data budget scenarios, both with guidance and without
1t.

Unguided models reach better performance on the aver-
age L2 metric in external branches, but this is in clear con-
flict with the perceptual quality assessment that can be done
on the generated points distributions. As Karras et al. state,
guided models generate points closer to the high-density re-
gions of the distribution, avoiding regions between branches
where the ground-truth probability density is low. This is
what originally led us to develop the classification and man-
dala scores (see Appendix C), a set of metrics that better
reflects autoguidance advantages and rewards the desired
behaviour of diffusion models in the 2D toy task.

B.2. EDM2 for Tiny ImageNet

We present images generated on the fix-budget and fix-time
scenarios in Figure 9. In the same-time comparison, it is
remarkable for Early AJEST to lead to the first human face
and the first goldfish with eyes. The autoguidance baseline,
however, leads to the first tractor and the closest image to a
golden retriever’s face.

We also present images generated using different EMA
and guidance weight in Figure 10. These hyperparameters
are shown to have a large influence on the image quality,
as first reported by Karras et al. [18]. Guidance improves
sharpness and contents considerably for EMA=0.10, but not
as much for EMA=0.05. This might be due to 2.2 being
closer to the ideal EMA for 0.10 than 1.7 is for 0.05.

Tables with separate results for EMA=0.05 and
EMA=0.10 -both with guidance and without it- can be seen
in Tables 5 and 5. Results averaged over those two EMA,
but with both guided and unguided metrics, are presented in
Table 6.

Our Tiny ImageNet results show new evidence that au-
toguidance is especially beneficial to improve coverage and
precision over the ground-truth distribution: guidance im-
proves all Swin-L top-1 and top-5 results, for as much as
10% in the best-case scenario.

In the time-limited scenario, there is a marked difference
between FID and all other metrics. Random reaches the
best FID score, and Early AJEST outperforms autoguid-
ance. However, all other metrics show Baseline as the best,
followed by Early AJEST, Random and finally AJEST. This
may be added to the list of alarming evidence on how FID
might not be an adequate metric to measure generated im-
age quality [32]. We strongly believe that generative vision
Al would benefit from better metric definitions.

We include training and validation curves for different
EMA and guidance combinations in Figures 11 to 14. The
trigger for Early AJEST can be deduced from the training
curves, as its training loss falls from AJEST’s to Baseline’s.
Data selection methods lead to consistently better results at
low data budgets, especially Full AJEST and random data
selection. Early AJEST only shows limited-data advantages
over Baseline on FID and FD-DINOV2, but it follows quite
closely its Top-1 and Top-5 performance under limited-time
settings.

Evidence suggests that data selection might help mitigate
overfitting on FID and FD-DINOvV2 for unguided models:
this is especially noticeable on the FID plot for EMA=0.05
and o = 1.7 (Figure 14). However, this effect might also
be explained by this being a very early stage in training
for AJEST and Random; the same overfitting phenomenum
might be present at later training times.

B.3. 2D toy example and other AJEST strategies
We explored the possibility of using both JEST’s learnabil-
ity score and an inverted learnability score:

mv _ TR L _ learn
S = Ljj — Li; = —s;5 (6)



Table 3. All evaluation metrics applied to the 2D tree task. Results are averaged over 5 runs with different random seeds. Standard
deviation is used to indicate uncertainty. Yellow-filled cells indicate the best scores for each metric: the lowest for the loss and L2 distance,
and the highest for classification-based scores. Undistinguishable results according to the uncertainty are marked in bold.

Average Loss Average L2 Distance Mandala score Classification score
Comparison Method
Full Tree External Branches Full Tree External Branches Unguided Guided Unguided Guided
Unguided Guided Unguided Guided
Same Baseline 0.011 =+ 0.003 0.227 =+ 0.007 0.019 =+ 0.005 0.246 + 0.297 0.482 + 0.003 0.613 & 0.210 0.51 & 0.07 0.73 £ 0.11 0.88 + 0.02 0.94 £ 0.01
6 Early AJEST 0.011 =+ 0.003 0.227 + 0.008 0.018 =+ 0.004 0.110 £ 0.019 0.483 + 0.003 0.516 =+ 0.019 0.50 £ 0.08 0.75 + 0.08 0.88 + 0.02 0.93 £ 0.02
me Full AJEST 0.024 4 0.006 0.253 4 0.009 0.028 4 0.008 0.118 4 0.025 0.482 + 0.004 0.514 + 0.020 0.40 £ 0.07 0.53 +0.12 0.80 4 0.03 0.85 £+ 0.04
budget
Random 0.013 £ 0.003 0.232 £ 0.005 0.019 =+ 0.003 0.101 =+ 0.006 0.482 + 0.002 0.508 £ 0.009 0.47 £ 0.06 0.71 £ 0.08 0.87 4 0.02 0.93 £ 0.01
s Baseline 0.026 % 0.008 0.255 % 0.011 0.034 £ 0.010 0.156 = 0.053 0.487 =+ 0.003 0.543 % 0.036 0.40 £ 0.07 0.53 £ 0.15 0.80 &£ 0.05 0.83 £ 0.09
ame
dat, Early AJEST 0.022 £ 0.007 0.249 £+ 0.012 0.028 =+ 0.006 0.120 + 0.029 0.481 =+ 0.005 0.515 + 0.030 0.42 £ 0.07 0.58 4 0.14 0.81 £ 0.05 0.86 £ 0.06
aa Full AJEST 0.013 + 0.003 0.234 £ 0.008 0.018 =+ 0.004 0.102 =+ 0.006 0.481 + 0.002 0.507 £ 0.009 0.46 £ 0.06 0.69 + 0.10 0.86 + 0.03 0.92 £ 0.02
budget _
Random 0.012 =+ 0.002 0.231 + 0.005 0.019 + 0.003 0.101 £ 0.005 0.482 £ 0.001 0.508 + 0.005 0.47 + 0.06 0.72 % 0.07 0.87 £ 0.02 0.93 £ 0.01
Same time budget
Unguided Guided
Autoguidance Autoguidance
Early AJEST Early AJEST

AJEST AJEST

Random Random

Figure 7. Distribution of generated points on the 2D tree task for the fix time budget of (16.6 = 0.5) min.
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Figure 8. Distribution of generated points on the 2D tree task for the fix data budget of (3.3 &= 0.2) million training examples.

In JEST they use Eq. (1) to prioritize extremely diffi-
cult samples that are only easy to learn for a high-capacity
reference [8]. This learnability score is therefore designed
for situations in which a larger pre-trained model with good
performance is available to use it as the smaller learner
model’s teacher. Karras et al’s research was framed on a
different situation, one in which we do not count with a dif-
ferent, better pre-trained model, but with a ”bad version”
of the learner model instead: a copy of the learner model
with restricted capability [18]. We therefore hypothesized
that it may be necessary to invert the sign of the learnability
score, using Eq. (6) to compensate for the guide not being

more capable than the learner. We refer to this approach as
inverted JEST or iJEST.

In addition to Early AJEST, we also explored a Late
AJEST strategy. As indicated in Figure 15, data selection
would only be run late in training under the Late AJEST
strategy. We assumed that Early AJEST and Late iAJEST
may reach complementary results, especially when com-
bined with the inverted and non-inverted learnability scores.
If data selection with learnability scores required a large
pre-trained model to work correctly, then we would expect
to see it work better early in training (Early AJEST). In con-
trast, in case the inverted learnability scores would help alle-
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Figure 9. Generated images for 10 classes on the 48 hs time-limited and 7.1 Mimg data-limited scenarios: (1) water tower, (2) convertible,
(3) golden retriever, (4) sulphur butterfly, (5) goldfish, (6) tractor, (7) hourglass, (8) neck brace, (9) viaduct, (10) orange.
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Figure 10. Generated images for 10 classes for AJEST under two different EMA values, both with guidance and without it: (1) water tower,
(2) convertible, (3) golden retriever, (4) sulphur butterfly, (5) goldfish, (6) tractor, (7) hourglass, (8) neck brace, (9) viaduct, (10) orange.

viate this JEST requirement, then we would expect iAJEST
to work better late in training (Late iAJEST).

Inverted JEST learnability scores applied late in training
can lead to improvements superior to 5% both for the aver-
age L2 distance and the mandala score. In general, iJEST
seems to improve the coverage over the generated samples

distribution, meaning it can lead to generative models with
higher diversity. Despite this, applying iJEST late in train-
ing for an extended period of time seems to over-estimate
the autoguidance corrective force, resulting in lower aver-
age loss and L2 distance evaluated in the full tree. This
seems to indicate that iJEST scoring enforces a trade-off
between diversity and fidelity or precision. The same trade-



Table 4. Evaluation metrics on Tiny ImageNet with EMA=0.05. Yellow-filled cells indicate the best scores for each block of the table,
considering both unguided results and guided results using guidance weight 1.7. Bold values indicate the best results for guided and
unguided models separately.

Perceptual metrics Classification-based metrics

Comparison Method
FID FD-DINOv2 Top-1 Top-5

Unguided Guided Unguided Guided Unguided Guided Unguided Guided

Same Baseline 44.6 343 822 677 47.9 56.8 69.8 78.5
{ime Early AJEST 45.5 34.7 813 677 46.3 542 68.9 76.8
budget AJEST 42.7 41.8 959 959 29.3 31.2 54.2 53.7
Random 33.8 28.6 799 717 39.2 44.9 62.9 67.6

Same Baseline 41.5 40.8 927 927 47.7 58.4 70.3 71.0
data Early AJEST 38.8 36.1 878 857 453 57.1 69.6 78.3
budget AJEST 42.7 41.8 959 959 29.3 31.2 54.2 53.7
Random 349 30.4 823 753 359 41.0 60.5 64.6

Table 5. Evaluation metrics on Tiny ImageNet with EMA=0.10. Yellow-filled cells indicate the best scores for each block of the table,
considering both unguided results and guided results using guidance weight 2.2. Bold values indicate the best results for guided and
unguided models separately.

Perceptual metrics Classification-based metrics

Comparison Method
FID FD-DINOV2 Top-1 Top-5

Unguided Guided Unguided Guided Unguided Guided Unguided Guided

Same Baseline 40.4 26.9 774 571 51.9 62.8 72.5 82.7
time Early AJEST 40.9 27.2 769 578 48.2 63.4 72.2 82.9
budget AJEST 41.5 40.3 950 940 29.4 325 55.9 55.5
Random 32.8 26.4 790 681 40.7 45.9 63.3 69.9

Same Baseline 41.1 40.1 930 940 50.4 65.3 72.7 82.2
data Early AJEST 37.7 33.4 871 842 47.7 64.3 71.9 82.7
budget AJEST 415 40.3 950 940 29.4 325 55.9 55.5
Random 34.0 28.1 815 720 36.0 40.8 60.7 65.4

Table 6. Evaluation metrics on Tiny ImageNet, averaging results from EMA=0.05 and EMA=0.10. Bold yellow values indicate the best
scores for each block of the table, considering both unguided results and guided results using guidance weight 1.7 for EMA=0.05 and 2.2
for EMA=0.10. Bold values indicate the best results for guided and unguided models separately.

Perceptual metrics Classification-based metrics
Comparison Method
FID FD-DINOV2 Top-1 Top-5
Unguided Guided Unguided Guided Unguided Guided Unguided Guided

Baseline 425 30.6 798 624 49.9 59.8 711 80.6

Same time budset Early AJEST 432 31.0 791 628 473 58.8 70.6 79.8

8 AJEST 42.1 41.0 955 949 29.3 31.8 55.0 54.6

Random 333 27.5 795 699 39.9 45.4 63.1 68.8

Baseline 413 40.4 929 934 49.0 61.8 71.5 79.6

Same data budget  E211Y AJEST 38.2 34.7 875 849 46.5 60.7 70.8 80.5

g AJEST 42.1 41.0 955 949 29.3 31.8 55.0 54.6

Random 34.4 29.2 819 737 36.0 40.9 60.6 65.0
off is apparently not as strongly enforced by non-inverted The best results were obtained applying Early AJEST.
JEST scores, allowing Early JEST to improve autoguidance The cost of applying JEST in this way was an increase of
metrics without any marked disadvantages. just 2.7% in the training time, because the data selection



strategy was only applied to 190 of the 4096 training itera-
tions. Early JEST improvements were less marked when-
ever guidance interpolation was applied in the inference
phase, indicating that JEST may be able to use the small
less-capable reference model only during training, discard-
ing it at the inference phase.

Despite the high filtering ratio of 80%, our Early JEST
method does not greatly reduce the volume of data used for
training. Applied for 194 iterations on a super-batch size
B of 4096, Early JEST implies only 1% of the total num-
ber of data points are discarded. In consequence, it may
seem that Early JEST is not particularly data-efficient. Its
success does not contradict the notion that diffusion models
cannot learn a distribution accurately enough if a significant
number of examples are discarded. However, the success of
Early JEST in the 2D tree task does seem to imply that there
are better ways to use data for diffusion models to learn.
A slightly more data-efficient algorithm may still be more
data-efficient that one that samples data uniformly from the
available distribution.

Baseline BN Early AJEST AJEST Random
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Figure 11. Training loss and validation metrics on Tiny ImageNet
for EMA=0.10 with no guidance.

C. Metrics definition

To quantitatively evaluate the performance of the diffusion
models and the impact of data selection strategies, we em-
ploy several complementary metrics to capture both fidelity
to the ground truth and diversity of the generated samples.

C.1. Metrics for the 2D tree toy example

We used 163,840 generated points with the same random
seeds to evaluate 2D tree metrics.

Average Loss. The primary training and evaluation loss
is the mean squared error (MSE) between the model’s pre-
dicted score function and the ground truth score, scaled by
the noise level o2:

N
1 9 2
LMSE = dei 15(xi,03) — 89 (x5, 00) || (D)
i=1
where N is the batch size, x; is a data sample, o; is the noise
level, S is the predicted score with or without guidance, and
59t is the ground truth score.
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Figure 12. Training loss and validation metrics on Tiny ImageNet
for EMA=0.10 with guidance weight o = 2.2.



Table 7. Evaluation metrics for models trained for 4096 iterations on the 2D tree task. Results are averaged over 5 runs with different
random seeds, with standard deviation indicating uncertainty. Bold yellow values represent the best scores for each metric across guided
and unguided settings. Bold black values highlight scores statistically indistinguishable from the best (within uncertainty).

Average Loss (Unguided)

L2 Distance (All)

L2 Distance (External)

Mandala Score

Classification Score

Comparison Method
All Branches External Branches Unguided Guided Unguided Guided Unguided Guided Unguided Guided

Autoguidance Autoguidance 0.0111 £0.003 0.223 £+0.007 0.0180 £0.004 0.207 40.220 0.4827 £0.003 0.603 4-0.187 0.63 £+0.05 0.82 £0.06 0.89 £+0.02 0.94 £0.01
Earl AJEST 0.0108 4-0.003 0.222 +0.007 0.0170 £0.003 0.106 +0.014 0.4830 £0.004 0.516 +0.019 0.63 £+0.05 0.81 £0.04 0.89 £+0.02 0.93 +0.01
warly iAJEST 0.0112 +0.003 0.223 £0.007 0.0162 +0.002 0.108 £0.020 0.4823 +0.004 0.521 4-0.031 0.63 £+0.05 0.82 +0.03 0.88 £+0.02 0.92 £+0.01
Late AJEST 0.0138 4-0.003 0.229 £0.007 0.0176 £0.003 0.100 £-0.004 0.4819 £0.002 0.510 £-0.009 0.57 £0.05 0.76 £0.06 0.86 £0.02 0.92 40.01
ate iAJEST 0.0129 4-0.003 0.228 £0.007 0.0196 +0.004 0.114 £0.024 0.4819 £0.002 0.522 4-0.027 0.62 £0.06 0.78 £0.06 0.86 £0.02 0.93 £-0.01
Full AJEST 0.0138 -0.003 0.231 4:0.010 0.0181 0.004 0.101 +-0.004 0.4814 +0.002 0.508 +0.009 0.57 +0.06 0.74 £:0.06 0.86 10.02 0.92 £0.01
iAJEST 0.0131 £-0.004 0.229 £0.010 0.0186 +0.004 0.101 1-0.004 0.4801 +0.003 0.502 +0.013 0.61 1-0.06 0.78 4-0.06 0.88 +0.02 0.92 £0.01
Random Random 0.0124 4-0.002 0.231 4:0.005 0.0192 +0.003 0.101 £0.005 0.4819 £+0.001 0.508 +-0.005 0.47 £0.06 0.72 £0.07 0.87 +0.02 0.93 +0.01

This loss is computed both over the entire data distri-
bution and specifically on the external branches of the 2D
tree, which correspond to regions of lower data density and
higher generation difficulty. Lower loss values indicate bet-
ter alignment with the true data distribution.

L2 Distance. To assess the quality of generated samples,
we compute the average Euclidean (L2) distance between
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Figure 13. Training loss and validation metrics on Tiny ImageNet
for EMA=0.05 with no guidance.

fully denoised samples produced by the model, x;, and
samples from the ground truth distribution, x?t obtained
with the same random seed. This metric is reported both
for the full distribution and for the external branches, pro-
viding insight into the model’s ability to capture both the
core and the periphery of the data manifold. We also report
a ’guided” L2 distance, where the model’s outputs are gen-
erated with guidance (e.g., autoguidance or classifier-free
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Figure 14. Training loss and validation metrics on Tiny ImageNet
for EMA=0.05 and guidance weight v = 1.7.
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Figure 15. Illustration of how Early and Late data selection strate-
gies are applied during training. Early in training, the reference is
better than the learner, so the super-batch reference loss is smaller
than the super-batch learner loss. Once the learner becomes better
than the reference, the situation is inverted.

guidance) during sampling. The L2 distance is given by:

M
1
. _ gt

L2 Distance = i Z ij - X; H ®)

j=1

where M is the number of generated samples, x; is a

generated (denoised) sample, and xf-t is the corresponding
ground truth sample.

Mandala Score. To measure the diversity and coverage of
the generated samples, we introduce the “mandala score”.
The 2D data space is discretized into a grid of K cells. Let
Cq+ denote the set of grid cells covered by the ground truth
distribution, and let Cge,, denote the set of 100 x 100 grid
cells that contain at least one generated sample. The man-
dala score is then defined as

[Cat N Cyen|

|Cgt|

where | - | denotes the cardinality of a set. A higher man-
dala score indicates better coverage and diversity, while a
lower score suggests mode collapse or insufficient explo-
ration of the data space.

Mandala Score =

€))

Classification Metric. We also report a classification-
based metric, specifically the binary accuracy. Let y; be
the true class label for sample j and §j; the predicted class
label. The binary accuracy is defined as:
M
Accuracy = i Z (g, = y;)

j=1

(10)

where [(+) is the indicator function and M is the number
of samples. Higher accuracy indicates that the model gen-
erates samples that are both realistic and class-consistent.

10

Ground truth distribution
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Figure 16. Single-run mandala score calculation for the 2D tree
ground truth data distribution: (a) 2'* = 16384 data points are
generated as plotted on the left; (b) a section of the 2D space that
completely covers the data distribution is discretized into a grid
with K = 1007 cells; the number of data points belonging to each
cell is counted and plotted on the right.

C.2. Metrics for image generation in Tiny ImageNet

Quality evaluation. Following Karras et al. [18], we ap-
ply two commonly used metrics to assess the quality of the
generated images. We calculate the Fréchet inception dis-
tance (FID) [12] and the Fréchet distance (FD) using DI-
NOv2 [26] features, as done by Stein et al. [32]. We fol-
low Karras et al.’s terminology and call this last metric FD-
DINOv2.

We generate 2000 images equally distributed between
classes to use 10 images per class, using always the same
set of random seeds. We then use a pretrained InceptionV3
[33] and DINOvV2 [26] to extract image features. We com-
pare these features to those obtained with the same models
applied to all images from Tiny ImageNet’s training dataset.

Classification-based evaluation. To avoid any biases im-
posed by the use of a single family of metrics, we apply a
pretrained classifier to the same 2000 generated images and
calculate the Top-1 and Top-5 accuracy when predicting the
ground-truth label out of the 200 classes available on Tiny
ImageNet.

Huynh et al. [14] fine-tuned a Swin-L transformer on
Tiny ImageNet, achieving a Top-1 accuracy of 91.35% on
Tiny ImageNet classification. The Swin-L model had pre-
viously been pre-trained on ImageNet-21k [21].

D. Licences

* Autoguidance code [18]

— Creative Commons BY-NC-SA 4.0 license
e EDM?2 models [19]

< Creative Commons BY-NC-SA 4.0 license
* InceptionV3 model [33]

— Apache 2.0 license
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e DINOv2 model [26]
— Apache 2.0 license
* Tiny ImageNet Swin-L classifier [14]
— Apache 2.0 license
* Tiny ImageNet dataset [20, 23, 38]
— Custom non-commercial license from ImageNet [7]
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