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Abstract

Triplane is an effective 3D representation capable of
generating high-quality 3D assets from 2D images by syn-
thesizing rich details from multiple viewing directions.
However, it relies heavily on multi-view images with cam-
era annotations to achieve sufficient detail across all per-
spectives. The limited availability of calibrated multi-view
image datasets, especially when compared to single-view
images, has left triplane representation significantly under-
constrained. In this work, we introduce SYM3D, which har-
nesses the common reflectional symmetry found in natural
and man-made objects to regulate triplane learning. How-
ever, symmetry alone does not resolve the ambiguity in each
plane’s focus within the 3D space without camera annota-
tions. To address this, we incorporate a view-aware spatial
attention mechanism that aligns each plane of the triplane
with a consistent focus in 3D space. We evaluate SYM3D
on the triplane representation across various frameworks
(3D-GAN and diffusion), tasks (reconstruction, uncondi-
tional generation, and text-to-3D), and datasets, including
synthetic (ShapeNet Chairs, Cars, and Airplanes) and real-
world data (ABO-Chair). The results demonstrate the ef-
fectiveness of integrating symmetry regularization. More
details can be found at our project page: https://
jingyang2017.github.io/sym3d.github.io/.

1. Introduction

Symmetry is a foundational trait in both natural and human-

made objects, providing structural balance, aesthetic ap-

peal, and functional coherence. Reflective symmetry, where

one side of an object mirrors the other, is pervasive in di-

verse subjects, from organic structures like butterfly wings

to man-made artifacts such as buildings, vehicles, and fur-

niture [16]. In 3D modeling [15, 26, 27, 29], this symmetry

acts as a useful prior, providing implicit information about

an object’s hidden views.

The triplane representation, introduced in EG3D [5], has

proven highly effective in 3D generative modeling, offering

a balance of memory efficiency, expressivity, and rendering

quality. In the 3D-GAN framework, GET3D [10] creates

textured meshes with separate triplanes for geometry and

texture. More recent diffusion models, such as SSDNerf [7]

and NFD [21], leverage multi-view images and camera an-

notations to model triplane distributions, generating 3D ob-

jects by progressively denoising sampled triplane codes.

However, these models struggle with single-view training,

where triplane codes become underdetermined, compromis-

ing accurate 3D generation.

Our core insight is that integrating a symmetry prior into

the triplane representation can address the limitations of

single-view training in 3D modeling. By enforcing reflec-

tional symmetry constraints, the model can utilize symme-

try to infer unseen details, resulting in more consistent and

well-oriented 3D assets. This symmetry prior establishes

a unified canonical orientation across objects, improving

model accuracy and preserving essential structural features,

both of which are vital for high-quality 3D asset generation.

To validate our approach, we select GET3D as our foun-

dation model for its superior performance over other 3D-

GAN methods [5, 18], its capability to generate explicit

3D meshes valuable for downstream applications requiring

structured outputs, and its flexibility over diffusion-based

methods, allowing training 3D representations without re-

quiring ground-truth images or camera annotations for su-

pervision. We test on symmetric datasets featuring cen-

tered objects in 2D images. This structured setup allows

us to explore the potential of our idea in controlled condi-

tions, while also highlighting its adaptability to more com-

plex, real-world applications, such as text-to-3D generation.

Unlike [22] trained on ImageNet with near-frontal single

images from diverse categories, our approach focuses on

learning detailed 3D representations for specific categories

that can be rendered from complete 360◦ views.

In this work, we propose SYM3D, a symmetry-aware

triplane model designed to learn from single-view images

without camera pose annotations, enabling 3D textured

mesh generation for symmetrical objects. Our framework

incorporates view-aware spatial attention and symmetry

regularization, enhancing the triplane model to better ad-

here to its intended structure: three axis-aligned planes de-

signed to capture the top, bottom, and side views of an ob-

ject. The view-aware spatial attention directs each geometry
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Figure 1. Comparison of shapes generated by GET3D [10] and our SYM3D, rendered in Blender. SYM3D learns symmetric triplanes for

improving 3D-awareness of GANs. Compared to GET3D, SYM3D can synthesize diverse objects with reasonable geometry and texture

after training it on datasets with incomplete views. Refer Section 4.1 for dataset details.

plane to focus on specific viewpoints, while symmetry regu-

larization enforces reflectional symmetry, reducing ambigu-

ity and promoting consistency in the generated assets (see

Figure 1 for a comparison between GET3D and SYM3D).

Our main contributions are summarized as follows:

• We introduce a symmetry-aware triplane representation

that enhances 3D awareness in triplane-based models

with minimal additional computational cost, effectively

capturing both geometry and texture from single-view im-

ages of symmetric objects.

• We are the first to incorporate symmetry regularization

into the triplane learning process, enabling complete rep-

resentations of symmetric objects even when trained on

datasets with incomplete views.

• Our experiments show the superior performance of the

symmetry-enhanced triplane in generating high-quality

3D assets across various categories of symmetric ob-

jects (chair, car, airplane), diverse datasets (synthetic

ShapeNet [6], real-world Amazon Berkeley Objects [9]),

and tasks (unconditional generation, reconstruction, and

text-to-3D), underscoring its potential for both synthetic

and real-world applications.

2. Related work
Triplane Representation for Generative models. Since

EG3D [5] introduces the concept of triplane representa-

tion, this representation has become increasingly popular

in 3D modeling for its efficiency and effectiveness. A line

of works focuses on improving triplane representations, for

example, He et al. [11] inject an extra axis to 2D triplane

by preserving information associated with projection dis-

tance. Wu and Zheng [25] develop a multi-scale triplane

in a hierarchical fashion that enables learning 3D shapes

from a single example, progressively refining from coarse

to detailed features. Another line of works distills the tri-

plane representation to describe a single object. Trevithick

et al. [23] learn a triplane representation to describe an un-

posed face from a pretrained EG3D, which facilitates real-

time, photo-realistic 3D face rendering. Bhattarai et al. [4]

improve GAN inversion by learning offsets to adjust the

triplane representation. Our work improves triplane rep-

resentation by introducing structure awareness, which en-

hances the triplane’s ability to capture distinct viewpoints

of an object. This enhancement is achieved in conjunction

with symmetry regularization, allowing for a more holistic

representation in training 3D-aware generators.

Reflectional Symmetry in Image Synthesis. Symmetric

objects are widespread in nature, architecture, and art, and

reflectional symmetry plays a key role in human visual per-

ception [16]. This concept has been extensively utilized in

computer vision research. A significant research direction

in this domain focuses on applying reflectional symmetry

principles to enhance the rendering of 2D images. Wu et

al. [26] investigate the inference of 3D deformable objects

from single images by employing symmetric structures to

distinguish between depth, albedo, viewpoint, and illumi-

nation components. NeRD [27] presents a neural detector

designed to identify 3D reflection symmetry in objects, es-

timating the normal vectors of their mirror planes. Yin et

al. [29] have advanced 3D GAN inversion techniques by

training with mirrored images, leveraging symmetry to en-

hance the quality of the results. SymmNeRF [15] represents

an innovative strategy that explicitly incorporates symme-

try into the training of neural radiance fields, utilizing both

pixel-aligned image features and their symmetric analogs as

additional training inputs. We introduce symmetry regular-
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Figure 2. Overview of proposed SYM3D. Random input vectors zg and zt are first mapped to a latent space (wg and wt) and then fed

into a shared generator to create the axis-aligned triplanes: geometry triplane G and texture triplane T . We assume that the shapes being

modeled have a symmetry plane (XY ) such that a subset of the axis-aligned planes (Y Z,XZ) can be regularized to exploit such symmetry.

We apply view-wise attention (Section 3.2) on geometry triplane, and regulate both geometry triplane and attention map with reflectional

symmetry (Section 3.3). We use DMTet method [20] to extract a 3D mesh. We describe a surface point p with both the original and its

reflective feature in texture triplane. Using differentiable rendering [14], we render RGB images and their silhouettes from different camera

angles. We then use two discriminators to determine whether the RGB and silhouette images are real or fake, without requiring the camera

pose of real images.

ization to both geometry and texture, ensuring more accu-

rate and realistic 3D asset generation. Our insight is that the

symmetry prior encodes information about the unseen view

of an object when only a single view is accessible.

3. Method

In this section, we introduce the pipeline of our proposed

3D symmetry-aware textured mesh generation method

(SYM3D), as shown in Figure 2.

3.1. Triplane Representation of 3D Assets
Our representation is built upon GET3D [10] for its ca-

pability to produce high-quality textured meshes and its

effective separation of geometry from texture through tri-

planes [5]. Following GET3D, we maintain two sets of tri-

planes, G = {GXY , GXZ , GY Z} for geometry and T =
{TXY , TXZ , TY Z} for texture, effectively storing the shape

and texture information of 3D objects. A triplane consists of

three axis-aligned orthogonal feature planes, each with size

N ×N × C where N is the spatial resolution and C is the

number of channels. To create a 3D asset, GET3D incorpo-

rates DMTet [20] in the generator, which represents geome-

try as a signed distance field (SDF) defined on a deformable

tetrahedral volume grid. For any vertex p = (x, y, z) in the

tetrahedral grid, we calculate its geometry feature by first

projecting it onto XY , XZ and Y Z planes based on its 2D

coordinate (x, y), (x, z), (y, z), and then querying and ag-

gregating features from these projections as described by:

G(x,y,z) = G(x,y) +G(x,z) +G(y,z). (1)

The feature vector G(x,y,z) then represents the geometric

features of p and is used to infer the SDF value and de-

formation of the tetrahedral volume grid. After comput-

ing SDF values and deformations, the differential marching

tetrahedral algorithm extracts the explicit mesh. To shade

a surface point, the texture feature T(x,y,z) is calculated

through a comparable process to Eq 1 and is used to predict

the RGB color. With a known mesh structure, it simplifies

computations by only requiring surface point queries, sig-

nificantly reducing computational complexity. To produce

high-quality textured meshes, GET3D was trained with syn-

thesized multi-view images rendered from various objects

with camera pose annotations.

After training GET3D in single images, we observe

that the geometry-based triplane representation, which uses

three axis-aligned planes intended to capture the top, bot-

tom, and side views of an object, often results in planes

that are highly similar. The difficulty in training a triplane

to have factorization features along axes in a 3D GAN setup

arises during the optimization phase. Here, the generator fo-

cuses solely on creating a realistic 2D image from a specific

view, overlooking the creation of a consistent high-quality

3D shape (see Figure 7).

To refine the triplane representation, we establish two

primary goals: first, ensuring that each plane maintains a

consistent focal region; and second, enforcing symmetry in

at least two of the three planes to accurately reflect the in-

herent symmetry of the object. To achieve these objectives,

we incorporate view-wise spatial attention, which directs

each plane to focus on specific scene regions from distinct
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viewpoints, and reflectional symmetry, which aligns the fea-

ture planes with the natural symmetry [16] of the modeled

object. [16] of the object being modeled. This dual ap-

proach enables triplane learning to simultaneously deceive

the discriminator and maintain a cohesive, accurate 3D rep-

resentation, ultimately enhancing both the effectiveness and

realism of generated 3D models.

3.2. View-wise Spatial Attention
Due to the lack of multi-view supervision when learning

triplane representations, each feature piece (N × N × 1)

in the triplane struggles to maintain a consistent focus, of-

ten resulting in high similarity of features across different

views. To enhance the robustness and spatial distribution

of features over the three views, we introduce view-wise

spatial attention (VSA) for each of the three planes (Figure

3). This mechanism enables each plane to better capture

distinct perspectives, promoting more accurate and diverse

feature representation across viewpoints(Figure 3).

ĜXZ

ĜY Z

ĜXY
GXZ

GY Z

GXY

AXY

ĜXY

ĜXZ

ĜY Z

Figure 3. Illustration of proposed view-wise spatial attention

(VSA) module. This module analyzes each plane individually, uti-

lizing spatial features as guidance for attention.

The concept of attention in this context is well-

documented in prior studies [13, 24]. Given that our planes

are naturally divided into three distinct groups, we concen-

trate on learning attention that is specific to each plane,

rather than applying the same attention across all planes.

This view-specific attention tailors the focus to the unique

aspects of each plane. For example, in Figure 3, our aim is

to ensure the XY plane to capture an object’s side view.

For each plane, this is achieved by initially aggregat-

ing the plane feature set along the channel axis via using

two pooling (max, average) operations, generating two 2D

maps. Subsequently, a localized convolutional layer is em-

ployed to derive the attention on the concatenation of two

maps, which is then mapped to a weight value in the inter-

val [0, 1] via a Sigmoid function:

AXY = σ
(

Conv
(

mean(ĜXY )⊕ max(ĜXY )
))

. (2)

To produce the attention-aware feature planes, we apply

element-wise multiplication between the attention map and

the original feature plane:

ĜXY = AXY �GXY . (3)

We apply VSR to each feature plane within G, and finally

we get a new set of triplanes:

Ĝ = {ĜXY , ĜY Z , ĜXZ}. (4)

3.3. Reflectional Symmetry Regularization
Reflectional symmetry is a common trait in many object

categories[16], including those under our study. To leverage

this characteristic, we impose a reflection-symmetry reg-

ularization on the geometry triplane G. Consider a chair

as an example, in its triplane representation, we impose re-

flectional symmetry along the XY -plane. We propose two

variants to enforce such symmetry:

Feature symmetry: For the plane features GY Z and GXZ ,

which correspond to the front and down views, respectively,

we enforce reflectional symmetry:

R(G) = ‖GY Z − flip(GY Z)‖2 + ‖GXZ − flip(GXZ)‖2.
(5)

Attention symmetry: For the plane attention AY Z and

AXZ , again corresponding to the front and bottom views,

we enforce reflectional symmetry as follows:

R(A) = ‖AY Z − flip(AY Z)‖2 + ‖AXZ − flip(AXZ)‖2.
(6)

While geometric symmetry is more naturally applicable

to some categories, texture symmetry can also be benefi-

cial [15]. We implement a methodology where each pixel’s

features are combined with those of its symmetrical coun-

terpart:

R(T(x,y,z)) = T(x,y)+
T(y,z) + T(y,−z)

2
+
T(x,z) + T(x,−z)

2
.

(7)

This technique is designed to efficiently capture and repre-

sent the object’s features. Rather than enforcing symmetry

across all regions, we focus specifically on the vertices of

the generated mesh, ensuring that attention is not unneces-

sarily diverted to unrelated areas.

3.4. Training Objectives
We follow GET3D [10] and use the standard adversarial

loss for training following:

LD = −E[log(1−D(If ))]− E[log(D(Ir))]

+ λE
[‖∇IrD(Ir)‖2

]
,

LG = −E[log(D(If ))] + αR(G) + βR(A),

(8)

where Ir represents real data while If denotes data pro-

duced by the generator (i.e. RGB image, silhouettes). The

third element in Eq 8 is the gradient penalty, with λ as the

weighting coefficient for this term. The hyperparameters α
and β control the symmetry constraint on the geometry tri-

plane and the attention maps, respectively. We have also

adopted the shape regularization utilized in GET3D, which

helps eliminate internal floating faces. Our discriminator

does not require the camera pose of real images, which is

inaccessible in most real-world datasets. Overall, by com-

bining symmetry prior with other losses, our method pro-

duces realistic images, not just strictly symmetrical ones,

making it suitable for a wide range of categories.
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Dataset Method
COV (%, ↑) MMD (↓) FID (↓)

LFD CD LFD CD 3D

Chair-S1

OP3D [11] 24.4 0.09 4183 34.05 60.82

GET3D [10] 66.31 15.03 3412 14.98 55.17

SYM3D 64.58 58.53 3227 4.42 38.23

Chair-S2

OP3D [11] 32.18 0.18 4764 11.8 74.83

GET3D [10] 67.29 15.38 3754 14.92 63.35

SYM3D 67.02 56.32 3563 4.74 51.18

Chair-S3

OP3D [11] 27.76 0.09 4853 15.50 76.40

GET3D [10] 63.00 16.00 3837 15.52 66.51

SYM3D 62.86 53.14 3661 4.94 56.59

Dataset Method
COV (%, ↑) MMD (↓) FID (↓)

LFD CD LFD CD 3D

Car-S1

OP3D [11] 29.24 0.07 2593 13.48 34.23

GET3D [10] 58.30 28.25 1461 1.42 29.69

SYM3D 63.35 36.13 1284 1.21 23.07

Car-S2

OP3D [11] 15.69 0.07 3404 18.5 41.49

GET3D [10] 55.96 19.88 1731 1.77 34.60

SYM3D 65.46 32.86 1708 1.50 31.35

Car-S3

OP3D [11] 12.43 0.13 3737 20.67 48.19

GET3D [10] 47.79 15.86 1747 1.80 36.39

SYM3D 50.13 19.88 1709 1.69 32.81

Table 1. Quantitative results on ShapeNet-Chair and ShapeNet-Car. The best result is shown in bold, and MMD-CD scores are multiplied

by 103.

4. Experiment

4.1. Settings
Datasets. We conduct experiments on the synthetic

ShapeNet [6] dataset and the real-world Amazon Berkeley

Objects (ABO) [9] dataset. Following GET3D [10], we fo-

cus on car and chair categories from ShapeNet, where each

object is represented by 24 different views. As suggested

by [10], we split each category into training (70%), vali-

dation (10 %), and testing (20%) sets. To simulate a more

realistic training scenario similar to natural images, our ap-

proach only uses a single view of each object in the training

set. We define three scenarios based on the range of az-

imuth angles for the selected view: Scenario 1 (S1) spans

0-360 degrees, Scenario 2 (S2) covers 0-180 degrees, and

Scenario 3 (S3) encompasses 0-120 degrees. For S2 and

S3, we adopt random view flips to enhance view diversity.

For ABO datasets, we run experiments on its chair category,

which has 1158 objects. All experiments are conducted at a

resolution of 1024× 1024.

Competitors. To the best of our understanding, SYM3D

marks the initial attempt to integrate a symmetry prior into

a triplane representation. While, GET3D is unique in its

approach to separate geometry and texture during the train-

ing of a 3D generative model, making it the benchmark in

this field. As such, GET3D serves as our primary refer-

ence point. We also draw comparisons with another SOTA

work in 3D-aware image synthesis, OrthoPlanes for 3D

(OP3D) [11], which enhances the triplane representation by

maintaining information related to the projection distance.

Implementations. In real-world settings, accurately deter-

mining camera poses can be difficult. As a result, we adopt

a strategy of training the discriminator without camera pose

condition, opting instead for a fixed camera distribution ap-

proach, as demonstrated to be effective in previous studies

[10, 18]. For all our experiments, we utilize the camera dis-

tribution defined in GET3D. It’s important to mention that

the camera distribution is not completely covered in S3. For

hyper-parameters, we set α = 100, β = 10 in the experi-

ments. Additionally, we adopt the same setup of [10] in-

cluding the training configuration as given in its open source

code1. Experiments are done on 8 A100 GPUS.

Metrics. To assess the quality of the generated objects,

we examine both their geometry and texture. For geomet-

ric, we use Coverage (COV) and Minimum Matching Dis-

tance (MMD) [1] metrics, which assess the average quality

and diversity of the shapes. The comparison between two

shapes is using the Chamfer Distance (CD) and the Light

Field Distance (LFD) [8], measuring their similarity. For

OP3D [11], we use marching cubes to extract the underly-

ing geometry. For texture, we utilize the Fréchet Inception

Distance (FID) [12], which is applied to 2D rendered im-

ages of the objects.

4.2. Main Results
Quantitative Results. The quantitative results for the

ShapeNet chairs and cars are presented in Table 1. Our

observations are as follows: (1) In comparison to OP3D

[11], which utilizes a single triplane representation to en-

code both shape and texture, GET3D [10] and our SYM3D,

which separate shape and texture learning, exhibit improved

generation in quality and diversity. (2) Models trained on

various splits show that S1 outperforms S2, which in turn

outperforms S3. Specifically, S1 encompasses a full 360-

degree view of an object category, S2 achieves a 360-degree

view through image flipping, while S3 is limited to a 240-

degree view. The results further suggest that incorporating

views from various angles, including those from other ob-

jects, enhances the learning of a 3D representation. (3) All

models are trained without conditioning discriminator on

camera poses. Our approach, which incorporates symme-

try assumed in a canonical space, yields superior results in

both COV and MMD metrics. This indicates that the shapes

1https://github.com/nv-tlabs/GET3D
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Figure 4. Qualitative comparison of SYM3D against OP3D and GET3D on generated images. SYM3D produces images with sharp details

and a high diversity of shapes.

(a) Trained on ShapeNet Chair-S1 (b) Trained on ShapeNet Car-S1
Figure 5. Rendered RGB images across different camera views.

learned by SYM3D closely resemble those in a canonical-

ized form. (4) SYM3D outperforms GET3D in majority

metrics, demonstrating the benefits of integrating symme-

try regularization and view-wise spatial attention into 3D

representations. Consequently, SYM3D proves to be an ef-

fective approach that enhances 3D representation.

Qualitative Comparisons. Figure 4 provides qualitative

comparisons against competitors in terms of generated 2D

images. In general, SYM3D achieves a more realistic ap-

pearance across different settings. In the more challenging

settings S2, S3, and real-world ABO-chair, OP3D struggles

to generate a complete scene, and GET3D tends to generate

distortions. Figure 5 provides comparisons across various

camera positions. GET3D and SYM3D are able to generate

view-consistent images across different camera views but

OP3D fails to do that. This demonstrates that decoupling

shape and texture benefits the 3D-aware generation.

Since both GET3D and SYM3D generate textured

meshes, we export their shapes into Blender and show their

comparison in Figure 6. SYM3D significantly outperforms

GET3D in creating textured meshes. It consistently deliv-

ers more regular and higher fidelity representations across

various objects. While GET3D struggles with generating

a complete shape, often producing armchairs with missing

halves, uneven chair backs, broken carriage, and other ir-

regularities. In contrast, our method provides uniform and

complete shapes. This advantage becomes even more ap-

parent when working with incomplete views (S3); GET3D

is prone to creating fragmented shapes due to the absence of

certain viewpoints. SYM3D shows that with symmetry as

a structural prior, the generator can learn to produce com-

plete and accurate shapes, even when trained on datasets

with limited views. Additionally, when applied to real-

world datasets, the shortcomings of GET3D become evi-

dent through the creation of chairs with unrealistic features,

such as five legs or irregularly shaped supports, highlighting

the effectiveness of our method.

4.3. Properties of Learned Triplane
View-wise Triplanes. We use a similarity matrix to mea-

sure difference among feature maps in the geometry tri-

plane. The geometry triplane is a N × N × 3C feature

tensor, which we flatten to a 2D tensor 3C ×N2.

Subsequently, we compute the similarity matrix for this

2D tensor. Each entry within this matrix is a cosine simi-

larity between the two channels. The rendered 2D images,

similarity matrix, along with 3 selected feature maps from

XY , Y Z, and XZ planes from both GET3D (i.e. GXY ,

GY Z , GXZ) and SYM3D (ĜXY ,ĜY Z ,ĜXZ), are visual-

ized in Figure 7. This comparison reveals that our method

produces planes more specific to each view, demonstrating

increased similarity within each plane but high discrimina-
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Figure 6. Comparison on shapes generated by GET3D and SYM3D rendered in Blender. SYM3D significantly outperforms GET3D

in creating textured meshes. It consistently delivers more regular and higher fidelity representations across various objects. In contrast,

GET3D often produces armchairs missing halves, uneven chair back, broken carriage, and other irregularities.

Figure 7. Geometry triplane comparison between GET3D and

SYM3D. From left to right: rendered 2D image, similarity ma-

trix across channels, feature maps from each plane. We note that

SYM3D displays enhanced view-wise properties.

tion across different planes. Furthermore, the XY plane

in our method clearly exhibits a side view pattern, offer-

ing a more distinct representation. Although the Y Z, XZ
planes do not capture front and down views in a precise way,

they still adhere to the symmetry assumption. We argue that

the enforced symmetry regularization plays a crucial role in

driving a clearer representation in the XY plane.

Robustness to Biased Views. Figure 1 shows the results

from models trained on the incomplete view dataset: Shap-

Net Chair-S3. Overall, SYM3D shows its superiority in

generating complete objects.

Consistent Camera Orientations. The fixed camera dis-

tribution strategy ensures that all objects produced by both

GET3D and SYM3D are uniformly positioned and oriented.

By applying symmetry regularization, our method secures a

consistent orientation for objects in the chair category with

respect to the symmetry plane (Figure 8).

Figure 8. Images rendered from different models given a fixed

camera view.

4.4. Further Analysis
The effect of different components. We validate the de-

sign of our framework by ablating four components using

the ShapeNet Chair-S1 dataset (in Table 2). SVE introduces

view-wise spatial enhancement in Section 3.2, R(G) adds

symmetry in feature maps as in Eq. 5, R(A) adds symmetry

in attention maps as in Eq. 6, R(T ) supplements a point’s

feature with its symmetric counterpart as in Eq. 7. Our find-

ings indicate that each component independently improves

the quality of generation, with the collective implementa-

tion of all elements resulting in the most effective model.

VSA R(G) R(A) Tex FID

� � � � 55.17

� � � � 47.87

� � � � 43.43

� � � � 41.09

� � � � 38.23
Table 2. ablation studies

With window self-attention. To show the effectiveness

of the proposed attention module, we compare SYM3D

against a variant that uses window self-attention [17] across
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three views, without employing attention symmetry. Con-

sidering memory limitations, we chose two window sizes:

Wins=4 and Wins=8. Table 3 indicates that SYM3D, while

adding negligible increases in parameters and computa-

tional cost, results in significant improvements.

Method Added Params Added Flops FID

GET3D [10] 0 0 55.17

WinS=4 4616 1.0G 49.83

WinS=8 6024 1.6G 46.73

SYM3D 294 19.3M 38.23
Table 3. Comparison using the self-attention module, tested on

ShapeNet Chair-S1.

On a more complex category. For evaluating the general-

ity of proposed method on more complex categories, we test

on airplane dataset in ShapeNet [6]. We render 24 views for

each object and select one view as training set. As shown in

Table 4, we obtain consistent results as on ShapeNet-Chair

and ShapeNet-Car in Table 1.

Method
COV (%, ↑) MMD (↓) FID (↓)

LFD CD LFD CD 3D

GET3D [10] 53.73 7.17 4980 5.37 40.66

SYM3D 57.85 49.07 4074 1.15 32.61
Table 4. Generality on a more complex category. Experiments are

done on ShapeNet Airplane.

5. Applications

Applied on the text-to-3D task. Current text-to-3D task

usually utilize text-to-image generation models as guidance.

The training process distills one image at a time, facing

challenges in maintaining consistent views and precise ge-

ometry, leading to texture misalignments, asymmetry, in-

coherent appearances, or severe “Janus effect” issues where

features like faces or eyes appear repeatedly and unnaturally

[3] in generated object. Symmetry assumption encodes in-

formation from unseen views, providing a global constraint

that defines a canonical frame, crucial for accurate model

alignment and generation.

To demonstrate the generalizability of our method, we

have applied our proposed symmetry regularization to this

task. MTN [28] introduces a multi-scale triplane represen-

tation for the text-to-3D task. We apply symmetric regular-

ization (see Eq 5) to these multi-scale triplanes. We develop

two versions: W/O SYM and W SYM, whose results are in

Figure 9. Our observations show that W/O SYM often gen-

erates salient artifacts, such as extra or malformed legs and

ears when modeling a cat, and a dog with three forelegs.

Conversely, W SYM produces cats and dogs without these

defects, proving that symmetric priors effectively eliminate

such artifacts in 3D model creation.

Figure 9. Comparisons on text-to-3D. W/O SYM produces arti-

facts in rendered images, while W SYM with symmetry regular-

ization loss avoids this.

Applied to SSDNerf To demonstrate the versatility of our

proposed method, we apply it to SSDNerf, a diffusion

framework that also employs the triplane representation for

3D modeling. We follow the public repository to train

vanilla SSDNerf and symmetric SSDNerf on random sam-

pled single view from each scene. This framework requires

supervised training with both camera poses and correspond-

ing rendered images. Table 5 shows that the symmetry prior

remains beneficial in this setting, yielding improved perfor-

mance on both generation and single-view reconstruction

tasks.

Method
Generation 1-View Reconstruction

FID↓ KID↓ PSNR↑ SSIM↑ LPIPS↓
SSDNerf 54.50 100.77 15.19 0.773 0.217

SSDNerf+SYM 31.24 57.84 17.44 0.818 0.165

Table 5. Comparison between SSDNerf and SSDNerf+SYM after

training on single-view images, evaluated on Generation and Re-

construction tasks.

6. Conclusion
We present SYM3D for learning symmetric triplanes for

improving 3D-awareness of GANs when trained on single

images without camera pose annotation. While effective it

has several limitations that future work should investigate.

Global reflectional symmetry is not always satisfied and

some objects satisfy other geometric transformations sym-

metry such as reflections, translations, rotations, or combi-

nations in local parts (i.e. car tires, chair legs). In future

work, we plan to extend our approach to create a large real

dataset of common object categories and combat the canon-

icalization issue as in [2] and symmetry issue as in [19].
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