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Abstract

Triplane is an effective 3D representation capable of
generating high-quality 3D assets from 2D images by syn-
thesizing rich details from multiple viewing directions.
However, it relies heavily on multi-view images with cam-
era annotations to achieve sufficient detail across all per-
spectives. The limited availability of calibrated multi-view
image datasets, especially when compared to single-view
images, has left triplane representation significantly under-
constrained. In this work, we introduce SYM3D, which har-
nesses the common reflectional symmetry found in natural
and man-made objects to regulate triplane learning. How-
ever, symmetry alone does not resolve the ambiguity in each
plane’s focus within the 3D space without camera annota-
tions. To address this, we incorporate a view-aware spatial
attention mechanism that aligns each plane of the triplane
with a consistent focus in 3D space. We evaluate SYM3D
on the triplane representation across various frameworks
(3D-GAN and diffusion), tasks (reconstruction, uncondi-
tional generation, and text-to-3D), and datasets, including
synthetic (ShapeNet Chairs, Cars, and Airplanes) and real-
world data (ABO-Chair). The results demonstrate the ef-
fectiveness of integrating symmetry regularization. More
details can be found at our project page: https://
jingyang2017.github.io/sym3d.github.io/.

1. Introduction

Symmetry is a foundational trait in both natural and human-
made objects, providing structural balance, aesthetic ap-
peal, and functional coherence. Reflective symmetry, where
one side of an object mirrors the other, is pervasive in di-
verse subjects, from organic structures like butterfly wings
to man-made artifacts such as buildings, vehicles, and fur-
niture [16]. In 3D modeling [15, 26, 27, 29], this symmetry
acts as a useful prior, providing implicit information about
an object’s hidden views.

The triplane representation, introduced in EG3D [5], has
proven highly effective in 3D generative modeling, offering
a balance of memory efficiency, expressivity, and rendering
quality. In the 3D-GAN framework, GET3D [10] creates
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textured meshes with separate triplanes for geometry and
texture. More recent diffusion models, such as SSDNerf [7]
and NFD [21], leverage multi-view images and camera an-
notations to model triplane distributions, generating 3D ob-
jects by progressively denoising sampled triplane codes.
However, these models struggle with single-view training,
where triplane codes become underdetermined, compromis-
ing accurate 3D generation.

Our core insight is that integrating a symmetry prior into
the triplane representation can address the limitations of
single-view training in 3D modeling. By enforcing reflec-
tional symmetry constraints, the model can utilize symme-
try to infer unseen details, resulting in more consistent and
well-oriented 3D assets. This symmetry prior establishes
a unified canonical orientation across objects, improving
model accuracy and preserving essential structural features,
both of which are vital for high-quality 3D asset generation.

To validate our approach, we select GET3D as our foun-
dation model for its superior performance over other 3D-
GAN methods [5, 18], its capability to generate explicit
3D meshes valuable for downstream applications requiring
structured outputs, and its flexibility over diffusion-based
methods, allowing training 3D representations without re-
quiring ground-truth images or camera annotations for su-
pervision. We test on symmetric datasets featuring cen-
tered objects in 2D images. This structured setup allows
us to explore the potential of our idea in controlled condi-
tions, while also highlighting its adaptability to more com-
plex, real-world applications, such as text-to-3D generation.
Unlike [22] trained on ImageNet with near-frontal single
images from diverse categories, our approach focuses on
learning detailed 3D representations for specific categories
that can be rendered from complete 360° views.

In this work, we propose SYM3D, a symmetry-aware
triplane model designed to learn from single-view images
without camera pose annotations, enabling 3D textured
mesh generation for symmetrical objects. Our framework
incorporates view-aware spatial attention and symmetry
regularization, enhancing the triplane model to better ad-
here to its intended structure: three axis-aligned planes de-
signed to capture the top, bottom, and side views of an ob-
ject. The view-aware spatial attention directs each geometry
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Figure 1. Comparison of shapes generated by GET3D [10] and our SYM3D, rendered in Blender. SYM3D learns symmetric triplanes for
improving 3D-awareness of GANs. Compared to GET3D, SYM3D can synthesize diverse objects with reasonable geometry and texture
after training it on datasets with incomplete views. Refer Section 4.1 for dataset details.

plane to focus on specific viewpoints, while symmetry regu-
larization enforces reflectional symmetry, reducing ambigu-
ity and promoting consistency in the generated assets (see
Figure 1 for a comparison between GET3D and SYM3D).

Our main contributions are summarized as follows:

We introduce a symmetry-aware triplane representation
that enhances 3D awareness in triplane-based models
with minimal additional computational cost, effectively
capturing both geometry and texture from single-view im-
ages of symmetric objects.

We are the first to incorporate symmetry regularization
into the triplane learning process, enabling complete rep-
resentations of symmetric objects even when trained on
datasets with incomplete views.

Our experiments show the superior performance of the
symmetry-enhanced triplane in generating high-quality
3D assets across various categories of symmetric ob-
jects (chair, car, airplane), diverse datasets (synthetic
ShapeNet [6], real-world Amazon Berkeley Objects [9]),
and tasks (unconditional generation, reconstruction, and
text-to-3D), underscoring its potential for both synthetic
and real-world applications.

2. Related work

Triplane Representation for Generative models. Since
EG3D [5] introduces the concept of triplane representa-
tion, this representation has become increasingly popular
in 3D modeling for its efficiency and effectiveness. A line
of works focuses on improving triplane representations, for
example, He et al. [11] inject an extra axis to 2D triplane
by preserving information associated with projection dis-
tance. Wu and Zheng [25] develop a multi-scale triplane
in a hierarchical fashion that enables learning 3D shapes
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from a single example, progressively refining from coarse
to detailed features. Another line of works distills the tri-
plane representation to describe a single object. Trevithick
et al. [23] learn a triplane representation to describe an un-
posed face from a pretrained EG3D, which facilitates real-
time, photo-realistic 3D face rendering. Bhattarai et al. [4]
improve GAN inversion by learning offsets to adjust the
triplane representation. Our work improves triplane rep-
resentation by introducing structure awareness, which en-
hances the triplane’s ability to capture distinct viewpoints
of an object. This enhancement is achieved in conjunction
with symmetry regularization, allowing for a more holistic
representation in training 3D-aware generators.

Reflectional Symmetry in Image Synthesis. Symmetric
objects are widespread in nature, architecture, and art, and
reflectional symmetry plays a key role in human visual per-
ception [16]. This concept has been extensively utilized in
computer vision research. A significant research direction
in this domain focuses on applying reflectional symmetry
principles to enhance the rendering of 2D images. Wu et
al. [26] investigate the inference of 3D deformable objects
from single images by employing symmetric structures to
distinguish between depth, albedo, viewpoint, and illumi-
nation components. NeRD [27] presents a neural detector
designed to identify 3D reflection symmetry in objects, es-
timating the normal vectors of their mirror planes. Yin et
al. [29] have advanced 3D GAN inversion techniques by
training with mirrored images, leveraging symmetry to en-
hance the quality of the results. SymmNeRF [15] represents
an innovative strategy that explicitly incorporates symme-
try into the training of neural radiance fields, utilizing both
pixel-aligned image features and their symmetric analogs as
additional training inputs. We introduce symmetry regular-
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Figure 2. Overview of proposed SYM3D. Random input vectors z, and z; are first mapped to a latent space (wy and w;) and then fed
into a shared generator to create the axis-aligned triplanes: geometry triplane GG and texture triplane 7. We assume that the shapes being
modeled have a symmetry plane (X Y") such that a subset of the axis-aligned planes (Y Z, X Z) can be regularized to exploit such symmetry.
We apply view-wise attention (Section 3.2) on geometry triplane, and regulate both geometry triplane and attention map with reflectional
symmetry (Section 3.3). We use DMTet method [20] to extract a 3D mesh. We describe a surface point p with both the original and its
reflective feature in texture triplane. Using differentiable rendering [14], we render RGB images and their silhouettes from different camera
angles. We then use two discriminators to determine whether the RGB and silhouette images are real or fake, without requiring the camera

pose of real images.

ization to both geometry and texture, ensuring more accu-
rate and realistic 3D asset generation. Our insight is that the
symmetry prior encodes information about the unseen view
of an object when only a single view is accessible.

3. Method

In this section, we introduce the pipeline of our proposed
3D symmetry-aware textured mesh generation method
(SYM3D), as shown in Figure 2.

3.1. Triplane Representation of 3D Assets

Our representation is built upon GET3D [10] for its ca-
pability to produce high-quality textured meshes and its
effective separation of geometry from texture through tri-
planes [5]. Following GET3D, we maintain two sets of tri-
planes, G = {Gxvy,Gxz,Gyz} for geometry and T' =
{Txvy,Txz,Tyz} for texture, effectively storing the shape
and texture information of 3D objects. A triplane consists of
three axis-aligned orthogonal feature planes, each with size
N x N x C where N is the spatial resolution and C' is the
number of channels. To create a 3D asset, GET3D incorpo-
rates DMTet [20] in the generator, which represents geome-
try as a signed distance field (SDF) defined on a deformable
tetrahedral volume grid. For any vertex p = (x,y, z) in the
tetrahedral grid, we calculate its geometry feature by first
projecting it onto XY, X Z and Y Z planes based on its 2D
coordinate (z,y), (z,2), (y, z), and then querying and ag-
gregating features from these projections as described by:

Gy =Gy +Gaz TGy, (1

6862

The feature vector G(, , ) then represents the geometric
features of p and is used to infer the SDF value and de-
formation of the tetrahedral volume grid. After comput-
ing SDF values and deformations, the differential marching
tetrahedral algorithm extracts the explicit mesh. To shade
a surface point, the texture feature T{, , .) is calculated
through a comparable process to Eq 1 and is used to predict
the RGB color. With a known mesh structure, it simplifies
computations by only requiring surface point queries, sig-
nificantly reducing computational complexity. To produce
high-quality textured meshes, GET3D was trained with syn-
thesized multi-view images rendered from various objects
with camera pose annotations.

After training GET3D in single images, we observe
that the geometry-based triplane representation, which uses
three axis-aligned planes intended to capture the top, bot-
tom, and side views of an object, often results in planes
that are highly similar. The difficulty in training a triplane
to have factorization features along axes in a 3D GAN setup
arises during the optimization phase. Here, the generator fo-
cuses solely on creating a realistic 2D image from a specific
view, overlooking the creation of a consistent high-quality
3D shape (see Figure 7).

To refine the triplane representation, we establish two
primary goals: first, ensuring that each plane maintains a
consistent focal region; and second, enforcing symmetry in
at least two of the three planes to accurately reflect the in-
herent symmetry of the object. To achieve these objectives,
we incorporate view-wise spatial attention, which directs
each plane to focus on specific scene regions from distinct



viewpoints, and reflectional symmetry, which aligns the fea-
ture planes with the natural symmetry [16] of the modeled
object. [16] of the object being modeled. This dual ap-
proach enables triplane learning to simultaneously deceive
the discriminator and maintain a cohesive, accurate 3D rep-
resentation, ultimately enhancing both the effectiveness and
realism of generated 3D models.

3.2. View-wise Spatial Attention

Due to the lack of multi-view supervision when learning
triplane representations, each feature piece (N x N x 1)
in the triplane struggles to maintain a consistent focus, of-
ten resulting in high similarity of features across different
views. To enhance the robustness and spatial distribution
of features over the three views, we introduce view-wise
spatial attention (VSA) for each of the three planes (Figure
3). This mechanism enables each plane to better capture
distinct perspectives, promoting more accurate and diverse
feature representation across viewpoints(Figure 3).

. ., ®) Point-wise dot product
verage
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Figure 3. [Illustration of proposed view-wise spatial attention
(VSA) module. This module analyzes each plane individually, uti-
lizing spatial features as guidance for attention.

The concept of attention in this context is well-
documented in prior studies [13, 24]. Given that our planes
are naturally divided into three distinct groups, we concen-
trate on learning attention that is specific to each plane,
rather than applying the same attention across all planes.
This view-specific attention tailors the focus to the unique
aspects of each plane. For example, in Figure 3, our aim is
to ensure the XY plane to capture an object’s side view.

For each plane, this is achieved by initially aggregat-
ing the plane feature set along the channel axis via using
two pooling (max, average) operations, generating two 2D
maps. Subsequently, a localized convolutional layer is em-
ployed to derive the attention on the concatenation of two
maps, which is then mapped to a weight value in the inter-
val [0, 1] via a Sigmoid function:

Axy =0 (Conv (mean(@xy) 25 max(éxy))> . (2

To produce the attention-aware feature planes, we apply
element-wise multiplication between the attention map and
the original feature plane:

Gxy = Axy ® Gxy. 3)

We apply VSR to each feature plane within G, and finally
we get a new set of triplanes:

G ={CGxy,Gyz,Gxz}. “4)
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3.3. Reflectional Symmetry Regularization
Reflectional symmetry is a common trait in many object
categories[ 16], including those under our study. To leverage
this characteristic, we impose a reflection-symmetry reg-
ularization on the geometry triplane G. Consider a chair
as an example, in its triplane representation, we impose re-
flectional symmetry along the XY -plane. We propose two
variants to enforce such symmetry:

Feature symmetry: For the plane features Gy z and Gx 7,
which correspond to the front and down views, respectively,
we enforce reflectional symmetry:

R(G) = |Gy z — flip(Gy 2)|I” + |Gxz — fip(Gx 7).
&)
Attention symmetry: For the plane attention Ay, and
Ax z, again corresponding to the front and bottom views,
we enforce reflectional symmetry as follows:
R(A) = | Ay z = flip(Ay 2)|I” + | Ax 2z — flip(Ax 2)||*.
(6)
While geometric symmetry is more naturally applicable
to some categories, texture symmetry can also be benefi-
cial [15]. We implement a methodology where each pixel’s
features are combined with those of its symmetrical coun-
terpart:

Tiy,2) + Tiy,—2) +T<a:,z> t Ta—2)

R(Twy) = T+ > 2

@)
This technique is designed to efficiently capture and repre-
sent the object’s features. Rather than enforcing symmetry
across all regions, we focus specifically on the vertices of
the generated mesh, ensuring that attention is not unneces-
sarily diverted to unrelated areas.

3.4. Training Objectives

We follow GET3D [10] and use the standard adversarial
loss for training following:

Lp = ~Eflog(1 — D(I}))] — Ellog(D(Z,))]
R [V, D(1)]2],
Le = ~Ellog(D(I}))] + aR(G) + BR(A),

where I, represents real data while /; denotes data pro-
duced by the generator (i.e. RGB image, silhouettes). The
third element in Eq 8 is the gradient penalty, with \ as the
weighting coefficient for this term. The hyperparameters o
and 3 control the symmetry constraint on the geometry tri-
plane and the attention maps, respectively. We have also
adopted the shape regularization utilized in GET3D, which
helps eliminate internal floating faces. Our discriminator
does not require the camera pose of real images, which is
inaccessible in most real-world datasets. Overall, by com-
bining symmetry prior with other losses, our method pro-
duces realistic images, not just strictly symmetrical ones,
making it suitable for a wide range of categories.

®)



Dataset Method COV (%, 1) MMD ()  FID() oo Method COV (%, 1) MMD (})  FID ()
LFD CD LFD CD 3D LFD CD LFD CD 3D

OP3D [11] 244 0.09 4183 3405 60.82 OP3D [11] 2924 0.07 2593 13.48 3423

Chair-S1 GET3D[10] 66.31 15.03 3412 1498 55.17 Car-S1 GET3D[10] 5830 2825 1461 142  29.69
SYM3D 64.58 58.53 3227 4.42 3823 SYM3D 6335 3613 1284 121  23.07
OP3D[I11] 3218 0.18 4764 11.8  74.83 OP3D[I1] 1569 0.07 3404 185  41.49

Chair-S2  GET3D [10] 67.29 1538 3754 1492 63.35 Car-S2 GET3D[10] 5596 19.88 1731 177  34.60
SYM3D 67.02 5632 3563 4.74 5118 SYM3D 6546 32.86 1708 150 31.35
OP3D[II] 2776 0.09 4853 1550 76.40 OP3D[I1] 1243 0.13 3737 20.67 48.19

Chair-S3  GET3D [10] 63.00 16.00 3837 1552 66.51  Car-S3 GET3D[10] 47.79 1586 1747 180  36.39
SYM3D 62.86 53.14 3661 494  56.59 SYM3D 50.13 19.88 1709 1.69  32.81

Table 1. Quantitative results on ShapeNet-Chair and ShapeNet-Car. The best result is shown in bold, and MMD-CD scores are multiplied

by 10°.
4. Experiment

4.1. Settings

Datasets. We conduct experiments on the synthetic
ShapeNet [6] dataset and the real-world Amazon Berkeley
Objects (ABO) [9] dataset. Following GET3D [10], we fo-
cus on car and chair categories from ShapeNet, where each
object is represented by 24 different views. As suggested
by [10], we split each category into training (70%), vali-
dation (10 %), and testing (20%) sets. To simulate a more
realistic training scenario similar to natural images, our ap-
proach only uses a single view of each object in the training
set. We define three scenarios based on the range of az-
imuth angles for the selected view: Scenario 1 (S1) spans
0-360 degrees, Scenario 2 (S2) covers 0-180 degrees, and
Scenario 3 (S3) encompasses 0-120 degrees. For S2 and
S3, we adopt random view flips to enhance view diversity.
For ABO datasets, we run experiments on its chair category,
which has 1158 objects. All experiments are conducted at a
resolution of 1024 x 1024.

Competitors. To the best of our understanding, SYM3D
marks the initial attempt to integrate a symmetry prior into
a triplane representation. While, GET3D is unique in its
approach to separate geometry and texture during the train-
ing of a 3D generative model, making it the benchmark in
this field. As such, GET3D serves as our primary refer-
ence point. We also draw comparisons with another SOTA
work in 3D-aware image synthesis, OrthoPlanes for 3D
(OP3D) [11], which enhances the triplane representation by
maintaining information related to the projection distance.
Implementations. In real-world settings, accurately deter-
mining camera poses can be difficult. As a result, we adopt
a strategy of training the discriminator without camera pose
condition, opting instead for a fixed camera distribution ap-
proach, as demonstrated to be effective in previous studies
[10, 18]. For all our experiments, we utilize the camera dis-
tribution defined in GET3D. It’s important to mention that

the camera distribution is not completely covered in S3. For
hyper-parameters, we set « = 100, 8 = 10 in the experi-
ments. Additionally, we adopt the same setup of [10] in-
cluding the training configuration as given in its open source
code'. Experiments are done on 8 A100 GPUS.

Metrics. To assess the quality of the generated objects,
we examine both their geometry and texture. For geomet-
ric, we use Coverage (COV) and Minimum Matching Dis-
tance (MMD) [1] metrics, which assess the average quality
and diversity of the shapes. The comparison between two
shapes is using the Chamfer Distance (CD) and the Light
Field Distance (LFD) [8], measuring their similarity. For
OP3D [11], we use marching cubes to extract the underly-
ing geometry. For texture, we utilize the Fréchet Inception
Distance (FID) [12], which is applied to 2D rendered im-
ages of the objects.

4.2. Main Results

Quantitative Results. The quantitative results for the
ShapeNet chairs and cars are presented in Table 1. Our
observations are as follows: (1) In comparison to OP3D
[11], which utilizes a single triplane representation to en-
code both shape and texture, GET3D [10] and our SYM3D,
which separate shape and texture learning, exhibit improved
generation in quality and diversity. (2) Models trained on
various splits show that S1 outperforms S2, which in turn
outperforms S3. Specifically, S1 encompasses a full 360-
degree view of an object category, S2 achieves a 360-degree
view through image flipping, while S3 is limited to a 240-
degree view. The results further suggest that incorporating
views from various angles, including those from other ob-
jects, enhances the learning of a 3D representation. (3) All
models are trained without conditioning discriminator on
camera poses. Our approach, which incorporates symme-
try assumed in a canonical space, yields superior results in
both COV and MMD metrics. This indicates that the shapes

https://github.com/nv-tlabs/GET3D
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Chair-S1 Chair-S2 Chair-S3 Car-S1

Car-S2

ABO-Chair

Figure 4. Qualitative comparison of SYM3D against OP3D and GET3D on generated images. SYM3D produces images with sharp details

and a high diversity of shapes.

GET3D OP3D

SYM3D

(a) Trained on ShapeNet Chair-S1
Figure 5. Rendered RGB images across different camera views.

learned by SYM3D closely resemble those in a canonical-
ized form. (4) SYM3D outperforms GET3D in majority
metrics, demonstrating the benefits of integrating symme-
try regularization and view-wise spatial attention into 3D
representations. Consequently, SYM3D proves to be an ef-
fective approach that enhances 3D representation.

Qualitative Comparisons. Figure 4 provides qualitative
comparisons against competitors in terms of generated 2D
images. In general, SYM3D achieves a more realistic ap-
pearance across different settings. In the more challenging
settings S2, S3, and real-world ABO-chair, OP3D struggles
to generate a complete scene, and GET3D tends to generate
distortions. Figure 5 provides comparisons across various
camera positions. GET3D and SYM3D are able to generate
view-consistent images across different camera views but
OP3D fails to do that. This demonstrates that decoupling
shape and texture benefits the 3D-aware generation.

Since both GET3D and SYM3D generate textured
meshes, we export their shapes into Blender and show their
comparison in Figure 6. SYM3D significantly outperforms
GET3D in creating textured meshes. It consistently deliv-
ers more regular and higher fidelity representations across
various objects. While GET3D struggles with generating
a complete shape, often producing armchairs with missing
halves, uneven chair backs, broken carriage, and other ir-
regularities. In contrast, our method provides uniform and
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(b) Trained on ShapeNet Car-S1

complete shapes. This advantage becomes even more ap-
parent when working with incomplete views (S3); GET3D
is prone to creating fragmented shapes due to the absence of
certain viewpoints. SYM3D shows that with symmetry as
a structural prior, the generator can learn to produce com-
plete and accurate shapes, even when trained on datasets
with limited views. Additionally, when applied to real-
world datasets, the shortcomings of GET3D become evi-
dent through the creation of chairs with unrealistic features,
such as five legs or irregularly shaped supports, highlighting
the effectiveness of our method.

4.3. Properties of Learned Triplane

View-wise Triplanes. We use a similarity matrix to mea-
sure difference among feature maps in the geometry tri-
plane. The geometry triplane is a N x N x 3C feature
tensor, which we flatten to a 2D tensor 3C' x N2.
Subsequently, we compute the similarity matrix for this
2D tensor. Each entry within this matrix is a cosine simi-
larity between the two channels. The rendered 2D images,
similarity matrix, along with 3 selected feature maps from
XY, YZ, and XZ planes from both GET3D (i.e. Gxy,
Gyz, Gxz) and SYM3D (éxy,éyz,éxz), are visual-
ized in Figure 7. This comparison reveals that our method
produces planes more specific to each view, demonstrating
increased similarity within each plane but high discrimina-
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Figure 6. Comparison on shapes generated by GET3D and SYM3D rendered in Blender.

Car-S2

hair

SYM3D significantly outperforms GET3D

in creating textured meshes. It consistently delivers more regular and higher fidelity representations across various objects. In contrast,
GET3D often produces armchairs missing halves, uneven chair back, broken carriage, and other irregularities.

Figure 7. Geometry triplane comparison bé:ween
SYM3D. From left to right: rendered 2D image, similarity ma-
trix across channels, feature maps from each plane. We note that
SYM3D displays enhanced view-wise properties.

Image Similarity Matrix YZ

XZ
GET3D and

tion across different planes. Furthermore, the XY plane
in our method clearly exhibits a side view pattern, offer-
ing a more distinct representation. Although the Y Z, X7
planes do not capture front and down views in a precise way,
they still adhere to the symmetry assumption. We argue that
the enforced symmetry regularization plays a crucial role in
driving a clearer representation in the XY plane.

Robustness to Biased Views. Figure | shows the results
from models trained on the incomplete view dataset: Shap-
Net Chair-S3. Overall, SYM3D shows its superiority in
generating complete objects.

Consistent Camera Orientations. The fixed camera dis-
tribution strategy ensures that all objects produced by both
GET3D and SYM3D are uniformly positioned and oriented.
By applying symmetry regularization, our method secures a
consistent orientation for objects in the chair category with
respect to the symmetry plane (Figure 8).
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Chair-S1 Chair-S2 Chair-S3 ABO-Chair
Figure 8. Images rendered from different models given a fixed
camera view.

4.4. Further Analysis

The effect of different components. We validate the de-
sign of our framework by ablating four components using
the ShapeNet Chair-S1 dataset (in Table 2). SVE introduces
view-wise spatial enhancement in Section 3.2, R(G) adds
symmetry in feature maps as in Eq. 5, R(A) adds symmetry
in attention maps as in Eq. 6, R(7T) supplements a point’s
feature with its symmetric counterpart as in Eq. 7. Our find-
ings indicate that each component independently improves
the quality of generation, with the collective implementa-
tion of all elements resulting in the most effective model.

VSA [ R(G) [ R(A) | Tex | FID
X X X | X [55.07
X v x | v 4187
v X vo| v | 4343
v v Vo x| 4109
v v v | v |3823

Table 2. ablation studies
With window self-attention. To show the effectiveness
of the proposed attention module, we compare SYM3D
against a variant that uses window self-attention [17] across



three views, without employing attention symmetry. Con-
sidering memory limitations, we chose two window sizes:
Wins=4 and Wins=8. Table 3 indicates that SYM3D, while
adding negligible increases in parameters and computa-

tional cost, results in significant improvements.

Method Added Params | Added Flops | FID
GET3D [10] 0 0 55.17
WinS=4 4616 1.0G 49.83
WinS=8 6024 1.6G 46.73
SYM3D 294 19.3M 38.23

Table 3. Comparison using the self-attention module, tested on
ShapeNet Chair-S1.

On a more complex category. For evaluating the general-
ity of proposed method on more complex categories, we test
on airplane dataset in ShapeNet [6]. We render 24 views for
each object and select one view as training set. As shown in
Table 4, we obtain consistent results as on ShapeNet-Chair
and ShapeNet-Car in Table 1.

Method _COV(%.17)  MMDQ) FID@)
LFD CD LFD CD 3D
GET3D[10] 53.73 7.17 4980 537  40.66
SYM3D 57.85 49.07 4074 115 32.61

Table 4. Generality on a more complex category. Experiments are
done on ShapeNet Airplane.

5. Applications

Applied on the text-to-3D task. Current text-to-3D task
usually utilize text-to-image generation models as guidance.
The training process distills one image at a time, facing
challenges in maintaining consistent views and precise ge-
ometry, leading to texture misalignments, asymmetry, in-
coherent appearances, or severe “Janus effect” issues where
features like faces or eyes appear repeatedly and unnaturally
[3] in generated object. Symmetry assumption encodes in-
formation from unseen views, providing a global constraint
that defines a canonical frame, crucial for accurate model
alignment and generation.

To demonstrate the generalizability of our method, we
have applied our proposed symmetry regularization to this
task. MTN [28] introduces a multi-scale triplane represen-
tation for the text-to-3D task. We apply symmetric regular-
ization (see Eq 5) to these multi-scale triplanes. We develop
two versions: W/O SYM and W SYM, whose results are in
Figure 9. Our observations show that W/O SYM often gen-
erates salient artifacts, such as extra or malformed legs and
ears when modeling a cat, and a dog with three forelegs.
Conversely, W SYM produces cats and dogs without these
defects, proving that symmetric priors effectively eliminate
such artifacts in 3D model creation.

a DSLR photo of a cat wearing a bee costume

W/O SYM

W SYM

a DSLR photo of a corgi puppy

W/O SYM

W SYM

Figure 9. Comparisons on text-to-3D. W/O SYM produces arti-
facts in rendered images, while W SYM with symmetry regular-
ization loss avoids this.

Applied to SSDNerf To demonstrate the versatility of our
proposed method, we apply it to SSDNerf, a diffusion
framework that also employs the triplane representation for
3D modeling. We follow the public repository to train
vanilla SSDNerf and symmetric SSDNerf on random sam-
pled single view from each scene. This framework requires
supervised training with both camera poses and correspond-
ing rendered images. Table 5 shows that the symmetry prior
remains beneficial in this setting, yielding improved perfor-
mance on both generation and single-view reconstruction
tasks.

Generation 1-View Reconstruction
Method
FID] KID] PSNRfT SSIMt LPIPS]
SSDNerf 54.50 100.77 15.19 0.773 0.217

SSDNerf+SYM  31.24  57.84 17.44 0.818 0.165

Table 5. Comparison between SSDNerf and SSDNerf+SYM after
training on single-view images, evaluated on Generation and Re-
construction tasks.

6. Conclusion

We present SYM3D for learning symmetric triplanes for
improving 3D-awareness of GANs when trained on single
images without camera pose annotation. While effective it
has several limitations that future work should investigate.
Global reflectional symmetry is not always satisfied and
some objects satisfy other geometric transformations sym-
metry such as reflections, translations, rotations, or combi-
nations in local parts (i.e. car tires, chair legs). In future
work, we plan to extend our approach to create a large real
dataset of common object categories and combat the canon-
icalization issue as in [2] and symmetry issue as in [19].
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